Aktuelle Dermatologie 2018; 44(05): 226-231
DOI: 10.1055/s-0043-122350
Übersicht
© Georg Thieme Verlag KG Stuttgart · New York

Molekulare Mechanismen der kutanen Photokarzinogenese: ein Update

Molecular Mechanisms of Cutaneous Photocarcinogenesis: An Update
M. C. Martens
Klinik und Poliklinik für Dermatologie und Venerologie, Universitätsmedizin Rostock
,
C. Seebode
Klinik und Poliklinik für Dermatologie und Venerologie, Universitätsmedizin Rostock
,
J. Lehmann
Klinik und Poliklinik für Dermatologie und Venerologie, Universitätsmedizin Rostock
,
S. Emmert
Klinik und Poliklinik für Dermatologie und Venerologie, Universitätsmedizin Rostock
› Author Affiliations
Further Information

Publication History

Publication Date:
09 May 2018 (online)

Zusammenfassung

UV-Strahlung gilt als primäre Ursache der Photokarzinogenese und trägt somit zur Entwicklung von kutanen Hautkrebsentitäten wie Plattenepithelkarzinom, Basalzellkarzinom und Melanom bei. Durch UV-Strahlung entstehen einerseits typische DNA-Photoprodukte und andererseits indirekte DNA-Schäden durch reaktive Sauerstoffspezies. UV-bedingte DNA-Schäden werden durch die Nukleotid-Exzisions-Reparatur behoben, die somit der Bildung von Mutationen und der Hautkrebsentwicklung entgegenwirkt. Durch Mutationen werden Tumorsuppressorgene inaktiviert und wachstumsfördernde Signalwege aktiviert, die die normale Zellzyklusprogression stören. Abhängig von der jeweilig zugrunde liegenden Hautkrebsentität, sind bestimmte Gene häufiger betroffen als andere. Basalzellkarzinome weisen häufig Patched- oder Smoothened-Mutationen auf, die den Sonic hedgehog-Signalweg beeinflussen. Plattenepithelkarzinome zeigen vermehrt TP53-Mutationen. Weitere Mutationen umfassen den epidermalen Wachstumsfaktorrezeptor, RAS, FYN und CDKN2A. In Melanomen konnten vor allem UV-induzierte Mutationen in TP53 und CDKN2A nachgewiesen werden. Zudem tragen UV-induzierte Entzündungsprozesse zur Photokarzinogenese bei. Neuere Studien konnten einen Einfluss von Zitrusfruchtkonsum, Alkoholkonsum, Hormonersatztherapien und oralen Kontrazeptiva auf die Photokarzinogenese feststellen. Präventive Maßnahmen gegen UV-bedingte Karzinogenese beinhalten den adäquaten Gebrauch von Sonnenschutz und regelmäßige Hautkrebsvorsorgeuntersuchungen.

Abstract

UV radiation is acknowledged to be the primary cause for photocarcinogenesis and therefore contributes to the development of skin cancer entities such as squamous cell carcinoma, basal cell carcinoma, and melanoma. Typical DNA-photoproducts and indirect DNA damage through reactive oxygen species are the results of UV radiation. UV-induced DNA damages are repaired by nucleotide excision repair, which consequently counteracts the development of mutations and skin cancerogenesis. Tumor suppressor genes are inactivated by mutation and growth-promoting pathways are activated so that the normal cell cycle progression is disrupted. Depending on the skin cancer entity some genes are more often affected than others. In basal cell carcinoma mutations in Patched or Smoothened are common and affect the Sonic hedgehog pathway. In SCC TP53 mutations are prevalent as well as mutations of the epidermal growth factor receptor, RAS, FYN, and CDKN2A. UV-induced mutations of TP53 and CDKN2A are frequent in melanoma. UV-induced inflammatory processes facilitate photocarcinogenesis. Recent studies showed a connection between citrus consumption, alcohol consumption, hormone replacement therapy, oral contraceptives, and photocarcinogenesis. Preventive measures include adequate use of sun protection and skin cancer screening at regular intervals.

 
  • Literatur

  • 1 Melnikova VO, Ananthaswamy HN. Cellular and molecular events leading to the development of skin cancer. Mutat Res 2005; 571: 91-106
  • 2 Seebode C, Lehmann J, Emmert S. Photocarcinogenesis and Skin Cancer Prevention Strategies. Anticancer Res 2016; 36: 1371-1378
  • 3 Black HS, deGruijl FR, Forbes PD. et al. Photocarcinogenesis: an overview. J Photochem Photobiol B 1997; 40: 29-47
  • 4 Holzer AM, Athar M, Elmets C. The other end of the rainbow: infrared and skin. J Invest Dermatol 2010; 130: 1496-1499
  • 5 Vink AA, Roza L. Biological consequences of cyclobutane pyrimidine dimers. J Photochem Photobiol B 2001; 65: 101-104
  • 6 de Laat WL, Jaspers NGJ, Hoeijmakers JHJ. Molecular mechanism of nucleotide excision repair. Genes Dev 1999; 13: 768-785
  • 7 Lehmann J, Schubert S, Emmert S. Xeroderma pigmentosum: diagnostic procedures, interdisciplinary patient care, and novel therapeutic approaches. J Dtsch Dermatol Ges 2014; 12: 867-872
  • 8 Ichihashi M, Ueda M, Budiyanto A. et al. UV-induced skin damage. Toxicology 2003; 189: 21-39
  • 9 Berking C. Photokarzinogenese. Der Hautarzt 2007; 58: 398-405
  • 10 Hussein M. Ultraviolet radiation and skin cancer: molecular mechanisms. J Cutan Pathol 2005; 32: 191-205
  • 11 Young AR. Acute effects of UVR on human eyes and skin. Prog Biophys Mol Biol 2006; 92: 80-85
  • 12 Kadekaro AL, Kavanagh RJ, Wakamatsu K. et al. Cutaneous photobiology. The melanocyte vs. the sun: who will win the final round?. Pigment Cell Res 2003; 16: 434-447
  • 13 Irwin C, Barnes A, Veres D. et al. An ultraviolet radiation action spectrum for immediate pigment darkening. Photochem. Photobiol 1993; 57: 504-507
  • 14 Emmert S, Schon MP, Haenssle HA. Molecular biology of basal and squamous cell carcinomas. Adv Exp Med Biol 2014; 810: 234-252
  • 15 Christenson LJ, Borrowman TA, Vachon CM. et al. Incidence of basal cell and squamous cell carcinomas in a population younger than 40 years. JAMA 2005; 294: 681-690
  • 16 Hodis E, Watson IR, Kryukov GV. et al. A landscape of driver mutations in melanoma. Cell 2012; 150: 251-263
  • 17 Athar M, Li C, Kim AL. et al. Sonic hedgehog signaling in basal cell nevus syndrome. Cancer Res 2014; 74: 4967-4975
  • 18 Oren M. Regulation of the p53 tumor suppressor protein. J Biol Chem 1999; 274: 36031-36034
  • 19 Khanna KK, Jackson SP. DNA double-strand breaks: signaling, repair and the cancer connection. Nat Genet 2001; 27: 247-254
  • 20 Fridman JS, Lowe SW. Control of apoptosis by p53. Oncogene 2003; 22: 9030-9040
  • 21 Sharpless NE, Chin L. The INK4a/ARF locus and melanoma. 2003; 3092-3098
  • 22 Saridaki Z, Liloglou T, Zafiropoulos A. et al. Cutaneous Biology Mutational analysis of CDKN2A genes in patients with squamous cell carcinoma of the skin. BJD 2003; 638-648
  • 23 Muthusamy V, Piva TJ. The UV response of the skin: A review of the MAPK, NFκB and TNFα signal transduction pathways. Arch Dermatol Res 2010; 302: 5-17
  • 24 Fischer SM, Pavone A, Mikulec C. et al. Cyclooxygenase-2 expression is critical for chronic UV-induced murine skin carcinogenesis. Mol Carcinog 2007; 46: 363-371
  • 25 Sivrikoz ON, Uyar B, Dag F. et al. Cxcr-4 and cox-2 expression in basal cell carcinomas and well-differentiated squamous cell carcinomas of the skin; their relationship with tumor invasiveness and histological subtype. Turkish J Pathol 2015; 31: 30-35
  • 26 Buckman SY, Gresham A, Hale P. et al. COX-2 expression is induced by UVB exposure in human skin: implications for the development of skin cancer. Carcinogenesis 1998; 19: 723-729
  • 27 Fritsche E, Schäfer C, Calles C. et al. Lightening up the UV response by identification of the arylhydrocarbon receptor as a cytoplasmatic target for ultraviolet B radiation. Proc Natl Acad Sci USA 2007; 104: 8851-8856
  • 28 Frauenstein K, Sydlik U, Tigges J. et al. Evidence for a novel anti-apoptotic pathway in human keratinocytes involving the aryl hydrocarbon receptor, E2F1, and checkpoint kinase 1. Cell Death Differ 2013; 20: 1425-1434
  • 29 Wu S, Cho E, Feskanich D. et al. Citrus consumption and risk of basal cell carcinoma and squamous cell carcinoma of the skin. Carcinogenesis 2015; 36: 1162-1168
  • 30 Wu S, Han J, Feskanich D. et al. Citrus Consumption and Risk of Cutaneous Malignant Melanoma. J Clin Oncol 2015; 33: 2500-2508
  • 31 Wu S, Li W-Q, Qureshi AA. et al. Alcohol consumption and risk of cutaneous basal cell carcinoma in women and men. J Invest Dermatol 2015; 135: S55
  • 32 Kuklinski LF, Zens MS, Perry AE. et al. Sex hormones and the risk of keratinocyte cancers among women in the United States: A population-based case-control study. Int J Cancer 2016; 139: 300-309
  • 33 Cahoon EK, Kitahara CM, Ntowe E. et al. Female estrogen-related factors and incidence of basal cell carcinoma in a nationwide us cohort. J Clin Oncol 2015; 33: 4058-4065
  • 34 Reichrath J, Nürnberg B. Cutaneous vitamin D synthesis versus skin cancer development: The Janus faces of solar UV-radiation. Dermatoendocrinol 2009; 1: 253-261
  • 35 Gritz ER, Tripp MK, De Moor CA. et al. Skin cancer prevention counseling and clinical practices of pediatricians. Pediatr Dermatol 2003; 20: 16-24
  • 36 Chen AC, Martin AJ, Choy B. et al. A Phase 3 Randomized Trial of Nicotinamide for Skin-Cancer Chemoprevention. N Engl J Med 2015; 373: 1618-1626