CC BY 4.0 · Organic Materials 2023; 5(02): 98-111
DOI: 10.1055/s-0043-1761309
Organic Thin Films: From Vapor Deposition to Functional Applications
Short Review

Chemical and Topological Control of Surfaces Using Functional Parylene Coatings

a   Karlsruhe Institute of Technology (KIT), Institute of Functional Interfaces (IFG), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
,
Xiaoyang Zhong
b   University of Michigan, Biointerfaces Institute, Ann Arbor, MI 48109, USA
,
John Kim
b   University of Michigan, Biointerfaces Institute, Ann Arbor, MI 48109, USA
,
Bahar Dadfar
a   Karlsruhe Institute of Technology (KIT), Institute of Functional Interfaces (IFG), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
,
a   Karlsruhe Institute of Technology (KIT), Institute of Functional Interfaces (IFG), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
b   University of Michigan, Biointerfaces Institute, Ann Arbor, MI 48109, USA
› Author Affiliations


Abstract

Chemical vapor deposition (CVD) polymerization is a prevalent technique for fabricating conformal, defect-free, and systematically adjustable organic thin films. CVD is particularly beneficial for barrier coatings due to its ability to eliminate solvent-related environmental, health, and safety risk factors and provide a wide spectrum of post-polymerization modification strategies. This review discusses poly-p-xylylene and its functional derivatives. CVD polymerization of [2.2]paracyclophane precursors has undergone a recent renaissance due to advancements in chemical and morphological surface manipulation. This review summarizes emerging trends based on the following outline:

Table of content:

1 Introduction

2 CVD Polymerization as a Sustainable Coating Technology

3 CVD Instrumentation

4 Poly-p-xylylene Coatings: Background of Polymerization Process and Functionalized Films

5 Main Applications of Poly-p-xylylenes

6 Area-Selective CVD Polymerization

7 Fabrication and Applications of Topological Structures

8 Conclusions and Outlook



Publication History

Received: 08 December 2022

Accepted after revision: 09 March 2023

Article published online:
04 May 2023

© 2023. This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting unrestricted use, distribution, and reproduction so long as the original work is properly cited. (https://creativecommons.org/licenses/by/4.0/).

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Ramanathan M, Darling SB. Prog. Polym. Sci. 2011; 36: 793
  • 2 Khlyustova A, Cheng Y, Yang R. J. Mater. Chem. B 2020; 8: 6588
  • 3 Lau W, Ismail A, Misdan N, Kassim M. Desalination 2012; 287: 190
    • 4a Hammond PT. AIChE J. 2011; 57: 2928
    • 4b Wood KC, Boedicker JQ, Lynn DM, Hammond PT. Langmuir 2005; 21: 1603
    • 4c Hammond PT. Mater. Today 2012; 15: 196
    • 4d Price AD, Johnston APR, Such GK, Caruso F. Reaction Vessels Assembled by the Sequential Adsorption of Polymers. Caruso F. Modern Techniques for Nano- and Microreactors/-reactions. Advances in Polymer Science. 229. Springer; Berlin: 2010: 115
  • 5 Xue F, Liu Z, Su Y, Varahramyan K. Microelectron. Eng. 2006; 83: 298
    • 6a Sukanek PC. J. Imaging Technol. 1985; 11: 184
    • 6b Yimsiri P, Mackley MR. Chem. Eng. Sci. 2006; 61: 3496
    • 6c Li X, Prukop SL, Biswal SL, Verduzco R. Macromolecules 2012; 45: 7118
    • 6d Ma C, Zhou H, Wu B, Zhang G. ACS Appl. Mater. Interfaces 2011; 3: 455
  • 7 Lau KK, Gleason KK. Macromolecules 2006; 39: 3688
    • 8a Rodger DC, Fong AJ, Li W, Ameri H, Ahuja AK, Gutierrez C, Lavrov I, Zhong H, Menon PR, Meng E. Sens. Actuators, B 2008; 132: 449
    • 8b Chen H-Y, Lahann J. Langmuir 2011; 27: 34
  • 9 Dion CD, Tavares JR. Powder Technol. 2013; 239: 484
  • 10 Choy K. Prog. Mater. Sci. 2003; 48: 57
  • 11 Rajabi H, Mosleh MH, Mandal P, Lea-Langton A, Sedighi M. Sci. Total Environ. 2020; 727: 138654
  • 12 Winterton N. Clean Technol. Environ. Policy 2021; 23: 2499
  • 13 Marvaniya HM, Modi KN, Sen DJ. Int. J. Drug Dev. Res. 2011; 3: 42
  • 14 Saini RD. Int. J. Oceans Oceanogr. 2017; 11: 217
  • 15 Varma RS. ACS Sustainable Chem. Eng. 2016; 4: 5866
  • 16 Yagüe JL, Coclite AM, Petruczok C, Gleason KK. Macromol. Chem. Phys. 2013; 214: 302
  • 17 Alf ME, Asatekin A, Barr MC, Baxamusa SH, Chelawat H, Ozaydin-Ince G, Petruczok CD, Sreenivasan R, Tenhaeff WE, Trujillo NJ. Adv. Mater. 2010; 22: 1993
  • 18 Pierson HO. Handbook of Chemical Vapor Deposition-Principles, Technology and Application. William Andrew Publishing; New York: 1999: 36
  • 19 Choy KL. Chemical Vapour Deposition (CVD). Advances, Technology and Applications. CRC Press; Boca Raton: 2019: 71
  • 20 Martin TP, Lau KK, Chan K, Mao Y, Gupta M, OʼShaughnessy WS, Gleason KK. Surf. Coat. Technol. 2007; 201: 9400
  • 21 dʼAgostino R, Cramarossa F, Illuzzi F. J. Appl. Phys. 1987; 61: 2754
  • 22 Fan Z, Engel JM, Chen J, Liu C. IEEE 2004; 13: 486
    • 23a Tenhaeff WE, Gleason KK. Adv. Funct. Mater. 2008; 18: 979
    • 23b Winther-Jensen B, West K. Macromolecules 2004; 37: 4538
  • 24 Moss T, Greiner A. Adv. Mater. Interfaces 2020; 7: 1901858
  • 25 Gorham WF. J. Polym. Sci., Part A: Polym. Chem. 1966; 4: 3027
  • 26 Szwarc M. Discuss. Faraday Soc. 1947; 2: 46
  • 27 Rogojevic S, Moore JA, Gill WN. J. Vac. Sci. Technol., A 1999; 17: 266
  • 28 Lahann J. Polym. Int. 2006; 55: 1361
  • 29 Wu M-G, Hsu H-L, Hsiao K-W, Hsieh C-C, Chen H-Y. Langmuir 2012; 28: 14313
  • 30 Lahann J, Klee D, Pluester W, Hoecker H. Biomaterials 2001; 22: 817
  • 31 Xie F, Deng X, Kratzer D, Cheng KCK, Friedmann C, Qi S, Solorio L, Lahann J. Angew. Chem. Int. Ed. 2017; 56: 203
  • 32 Hopf H. Angew. Chem. Int. Ed. 2008; 47: 9808
  • 33 Bier AK, Bognitzki M, Schmidt A, Greiner A, Gallo E, Klack P, Schartel B. Macromolecules 2012; 45: 633
  • 34 Elkasabi Y, Chen H-Y, Lahann J. Adv. Mater. 2006; 18: 1521
  • 35 Lahann J. Chem. Eng. Commun. 2006; 193: 1457
  • 36 Chen Y-C, Sun T-P, Su C-T, Wu J-T, Lin C-Y, Yu J, Huang C-W, Chen C-J, Chen H-Y. ACS Appl. Mater. Interfaces 2014; 6: 21906
  • 37 Elkasabi Y, Lahann J. Macromol. Rapid Commun. 2009; 30: 57
  • 38 Wood R. Mater. World 2000; 8: 30
  • 39 Yu Q, Deffeyes J, Yasuda H. Prog. Org. Coat. 2001; 41: 247
  • 40 Hanefeld P, Sittner F, Ensinger W, Greiner A. e-Polymers 2006; 26: 1
  • 41 Lahann J, Choi IS, Lee J, Jensen KF, Langer R. Angew. Chem. Int. Ed. 2001; 40: 3166
  • 42 Klee D, Weiss N, Lahann J. Vapor-Based Polymerization of Functionalized [2.2]Paracyclophanes: A Unique Approach towards Surface-Engineered Microenvironments. Gleiter R, Hopf H. Modern Cyclophane Chemistry. Chap. 18 Wiley-VCH; Weinheim: 2004: 463
  • 43 Lahann J, Klee D, Höcker H. Mater. Sci. Eng. 1999; 30: 763
  • 44 Bates B, Ragheb A, Fearnot N, Voorhees W, Kozma T, Grewe D, Schaeffer D. U. S. Pat. Appl. Publ. 1997; 8: 484
    • 45a Weisenberg BA, Mooradian DL. J. Biomed. Mater. Res. 2002; 60: 283
    • 45b Ryu KS, Shaikh K, Goluch E, Fan Z, Liu C. Lab Chip 2004; 4: 608
    • 46a Alrifaiy A, Lindahl OA, Ramser K. Polymers. 2012; 4: 1349
    • 46b Teles FRR, Fonseca LP. Mater. Sci. Eng., C 2008; 28: 1530
  • 47 Nandivada H, Chen HY, Lahann J. Macromol. Rapid Commun. 2005; 26: 1794
  • 48 Kashima Y, Munakata T, Matoba A. Opt. Rev. 1997; 4: A69
  • 49 Lahann J, Langer R. Macromolecules 2002; 35: 4380
    • 50a Lahann J, Balcells M, Lu H, Rodon T, Jensen KF, Langer R. Anal. Chem. 2003; 75: 2117
    • 50b Jiang X, Chen HY, Galvan G, Yoshida M, Lahann J. Adv. Funct. Mater. 2008; 18: 27
  • 51 Deng X, He S, Xie F, Friedmann C, Hess H, Lahann J. Adv. Mater. 2016; 28: 2367
  • 52 Xia YN, Whitesides GM. Annu. Rev. Mater. Sci. 1998; 28: 153
  • 53 Kumar A, Whitesides GM. Appl. Phys. Lett. 1993; 63: 2002
  • 54 Chen H-Y, Lahann J. Anal. Chem. 2005; 77: 6909
  • 55 Suh KY, Langer R, Lahann J. Appl. Phys. Lett. 2003; 83: 4250
  • 56 Chen H-Y, Hirtz M, Deng X, Laue T, Fuchs H, Lahann J. J. Am. Chem. Soc. 2010; 132: 18023
  • 57 Im SG, Kim B-S, Lee LH, Tenhaeff WE, Hammond PT, Gleason KK. Macromol. Rapid Commun. 2008; 29: 1648
    • 58a Wang M, Wang X, Moni P, Liu A, Kim DH, Jo WJ, Sojoudi H, Gleason KK. Adv. Mater. 2017; 29: 1604606
    • 58b Yu SJ, Pak K, Kwak MJ, Joo M, Kim BJ, Oh MS, Baek J, Park H, Choi G, Kim DH, Choi J, Choi Y, Shin J, Moon H, Lee E, Im SG. Adv. Eng. Mater. 2018; 20: 1700622
    • 59a Kim J, Jang SC, Bae K, Park J, Kim H-D, Lahann J, Kim H-S, Lee KJ. ACS Appl. Mater. Interfaces 2021; 13: 43123
    • 59b Deng X, Lahann J. J. Appl. Polym. Sci. 2014; 131,: 40315
  • 60 Parsons GN. J. Vac. Sci. Technol., A 2019; 37: 020911
  • 61 Parsons GN, Clark RD. Chem. Mater. 2020; 32: 4920
  • 62 Gladfelter WL. Chem. Mater. 1993; 5: 1372
  • 63 Vaeth KM, Jensen KF. Adv. Mater. 1999; 11: 814
  • 64 Vaeth KM, Jensen KF. Chem. Mater. 2000; 12: 1305
  • 65 Chen H-Y, Lai JH, Jiang X, Lahann J. Adv. Mater. 2008; 20: 3474
  • 66 Vitos L, Ruban A, Skriver HL, Kollár J. Surf. Sci. 1998; 411: 186
  • 67 Yu NF, Tian N, Zhou ZY, Huang L, Xiao J, Wen YH, Sun SG. Angew. Chem. Int. Ed. 2014; 53: 5097
  • 68 Xiao C, Lu B-A, Xue P, Tian N, Zhou Z-Y, Lin X, Lin W-F, Sun S-G. Joule 2020; 4: 2562
  • 69 Fortin JB, Lu TM. Chem. Mater. 2002; 14: 1945
  • 70 Lee IJ, Yun M. Macromolecules 2010; 43: 5450
    • 71a Kolahalam LA, Kasi Viswanath IV, Diwakar BS, Govindh B, Reddy V, Murthy YLN. Mater. Today Proc. 2019; 18: 2182
    • 71b Abid N, Khan AM, Shujait S, Chaudhary K, Ikram M, Imran M, Haider J, Khan M, Khan Q, Maqbool M. Adv. Colloid Interface Sci. 2021; 300: 102597
  • 72 Tung H-Y, Guan Z-Y, Liu T-Y, Chen H-Y. Nat. Commun. 2018; 9: 4383
  • 73 Wu C-Y, Wu T-Y, Guan Z-Y, Wang P-Y, Yang Y-C, Huang C-W, Lin T-H, Chen H-Y. Nat. Commun. 2021; 12: 3413
  • 74 Begum S, Behboodi-Sadabad F, Pramudya Y, Dolle C, Kozlowska M, Hassan Z, Mattern C, Gorji S, Heißler S, Welle A. Chem. Mater. 2022; 34: 6268
    • 75a Majdecki M, Niedbala P, Jurczak J. ChemistrySelect 2020; 5: 6424
    • 75b Majdecki M, Tyszka-Gumkowska A, Jurczak J. Org. Lett. 2020; 22: 8687
    • 75c Majdecki M, Grodek P, Jurczak J. J. Org. Chem. 2021; 86: 995
  • 76 Gonay M, Batisse C, Paquin J-F. Synthesis 2020; 53: 653
  • 77 Nairoukh Z, Strieth-Kalthoff F, Bergander K, Glorius F. Chem. Eur. J. 2020; 26: 6141
  • 78 Slivka M, Onysko M. Synthesis 2021; 53: 3497
  • 79 Zeng J, Aigner A, Czubayko F, Kissel T, Wendorff JH, Greiner A. Biomacromolecules 2005; 6: 1484
  • 80 Demirel MC. Colloids Surf., A 2008; 321: 121
  • 81 Noorduin WL, Grinthal A, Mahadevan L, Aizenberg J. Science 2013; 340: 832
  • 82 Williams AH, Roh S, Jacob AR, Stoyanov SD, Hsiao L, Velev OD. Nat. Commun. 2021; 12: 2834
    • 83a Tsuei M, Tran H, Roh S, Ober CK, Abbott NL. Macromolecules 2021; 54: 7786
    • 83b Poulin P, Raghunathan V, Richetti P, Roux D. Science 1994; 275: 1770
  • 84 Mitani M, Ogata S, Yamane S, Yoshio M, Hasegawa M, Kato T. J. Mater. Chem. C 2016; 4: 2752
  • 85 Akagi K, Piao G, Kaneko S, Sakamaki K, Shirakawa H, Kyotani M. Science 1998; 282: 1683
  • 86 Cheng KC, Bedolla-Pantoja MA, Kim Y-K, Gregory JV, Xie F, De France A, Hussal C, Sun K, Abbott NL, Lahann J. Science 2018; 362: 804
  • 87 Varadharajan D, Nayani K, Zippel C, Spuling E, Cheng KC, Sarangarajan S, Roh S, Kim J, Trouillet V, Bräse S. Adv. Mater. 2022; 34: 2108386
  • 88 Yang J, Li P, Zhao B, Pan K, Deng J. Nanoscale Adv. 2020; 2: 1301
  • 89 Zhao B, Yu H, Pan K, Tan Za, Deng J. ACS Nano 2020; 14: 3208
  • 90 Roh S, Kim J, Varadharajan D, Lahann J, Abbott NL. Adv. Funct. Mater. 2022; 32: 2200830
  • 91 Nayani K, Rai P, Bao N, Yu H, Mavrikakis M, Twieg RJ, Abbott NL. Adv. Mater. 2018; 30: 1706707
  • 92 GlobeNewswire. Accessed September 12, 2022 at: https://www.globenewswire.com/en/news-release/2022/09/12/2514100/0/en/Conformal-Coatings-Market-is-estimated-to-be-US-1532-75-million-by-2030-with-a-CAGR-of-5-8-during-the-forcast-period-By-PML.html