Subscribe to RSS

DOI: 10.1055/s-0043-1762581
Aerobic Exercise Modulates Visceral Adipose Tissue of Estrogen Deprived Rats in an Experimental Model of Dyslipidemia
Funding None.
Abstract
Introduction Menopausal women have an increase deposition of body fat and changes in the lipid profile, being especially susceptible to cardiovascular diseases, and type 2 diabetes. However, physical activity can mitigate this situation. Thus, the aim of the present study is to evaluate the effects of moderate aerobic exercise on visceral adipose tissue (VAT) of female LDL-receptor knockout ovariectomized mice.
Methods We used 48 animals, divided into six groups (n = 8/per group): sedentary control (SC), sedentary ovariectomized control (SCO), trained ovariectomized control (TCO), sedentary non-ovariectomized LDL-receptor knockout (KS), sedentary ovariectomized LDL-receptor knockout (KOS), and trained LDL-receptor knockout ovariectomized (KOT). We analyzed the VAT through morphometric and stereological parameters in hematoxylin and eosin stained sections. Additionally, we evaluated biochemical parameters as glucose, triglycerides, and total cholesterol. Finally, immunohistochemical techniques for matrix remodeling, inflammation, apoptosis, and oxidative stress were evaluated.
Results We observed that menopause is related to increased visceral adiposity, inflammation, oxidative stress, macrophages activity, serum levels of glucose, triglycerides, and total cholesterol. However, exercise was effective in reducing these parameters, as well as being associated with increased vascularization of VAT and interstitial volume density.
Conclusions Moderate exercise is a key factor in mitigating the effects of dyslipidemia in estrogen deprivation. However, further studies are needed to corroborate with our findings.
Availability of Data and Materials
The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.
Authors' contributions
Walkyria Villegas Magalhães: Investigation, writing-review and editing.
Kemily Loren Barros Chucata: Investigation, writing-review and editing.
Nuha Ahmad Dsouki: Investigation, writing-review and editing.
Ricardo Aparecido Baptista Nucci: Data curation, formal analysis, visualization, writing-review and editing.
Aparecida Gabriela Bexiga Veloso: Investigation, writing-review and editing.
Fernando Luiz Affonso Fonseca: Resources, supervision, validation, writing-original draft.
Laura Beatriz Mesiano Maifrino: Conceptualization, methodology, project administration, writing-original draft.
Publication History
Article published online:
14 April 2023
© 2023. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting unrestricted use, distribution, and reproduction so long as the original work is properly cited. (https://creativecommons.org/licenses/by/4.0/)
Thieme Medical and Scientific Publishers Pvt. Ltd.
A-12, 2nd Floor, Sector 2, Noida-201301 UP, India
-
References
- 1 Brianezi L, Marques M, Cardoso CG, Miranda MLdJ, Fonseca FLA, Maifrino LB. Effects of physical training on the myocardium of female ldl knockout ovariectomized mice. Rev Bras Med Esp 2017; 23 (06) 441-445 DOI: 10.1590/1517-869220172306160084.
- 2 Burns RA, French D, Luszcz M, Kendig HL, Anstey KJ. Heterogeneity in the health and functional capacity of adults aged 85+ as risk for mortality. J Am Geriatr Soc 2019; 67 (05) 1036-1042 DOI: 10.1111/jgs.15780.
- 3 Naser B, Castelo-Branco C, Meden H. et al. Weight gain in menopause: systematic review of adverse events in women treated with black cohosh. Climacteric 2022; 25 (03) 220-227 DOI: 10.1080/13697137.2021.1973993.
- 4 Alvarez MS, Fernandez-Alvarez A, Cucarella C, Casado M. Stable SREBP-1a knockdown decreases the cell proliferation rate in human preadipocyte cells without inducing senescence. Biochem Biophys Res Commun 2014; 447 (01) 51-56 DOI: 10.1016/j.bbrc.2014.03.104.
- 5 Schaffer JE. Lipotoxicity: many roads to cell dysfunction and cell death: introduction to a thematic review series. J Lipid Res 2016; 57 (08) 1327-1328 DOI: 10.1194/jlr.E069880.
- 6 Yoon H, Shaw JL, Haigis MC, Greka A. Lipid metabolism in sickness and in health: Emerging regulators of lipotoxicity. Mol Cell 2021; 81 (18) 3708-3730 DOI: 10.1016/j.molcel.2021.08.027.
- 7 Crewe C, An YA, Scherer PE. The ominous triad of adipose tissue dysfunction: inflammation, fibrosis, and impaired angiogenesis. J Clin Invest 2017; 127 (01) 74-82 DOI: 10.1172/JCI88883.
- 8 Larabee CM, Neely OC, Domingos AI. Obesity: a neuroimmunometabolic perspective. Nat Rev Endocrinol 2020; 16 (01) 30-43 DOI: 10.1038/s41574-019-0283-6.
- 9 Park HJ, Kim J, Bak S, Lee M. High salt intake induces adipogenesis by the modulation of MAPK/ERK1/2 pathway in both 3T3-L1 adipocytes and co-culture with macrophages. FASEB J 2017; 31: 947.2 DOI: 10.1096/fasebj.31.1_supplement.947.2.
- 10 Cury JCS, Encinas JA, Nucci RAB. et al. Effects of different diet intake and resistance training on left ventricle remodeling in ovariectomized rats. Comp Clin Pathol 2019; 28 (06) 1797-1803 DOI: 10.1007/s00580-019-03022-w.
- 11 Maifrino LBM, Lima NEA, Marques MR. et al. Evaluation of collagen fibers, MMP2, MMP9, 8-OHdG and apoptosis in the aorta of ovariectomized LDL knockout mice submitted to aerobic exercise. Arq Bras Cardiol 2019; 112 (02) 180-188 DOI: 10.5935/abc.20180263.
- 12 Marchon C, de Marco Ornelas E, da Silva Viegas KA. et al. Effects of moderate exercise on the biochemical, physiological, morphological and functional parameters of the aorta in the presence of estrogen deprivation and dyslipidemia: an experimental model. Cell Physiol Biochem 2015; 35 (01) 397-405 DOI: 10.1159/000369705.
- 13 Brianezi L, Ornelas E, Gehrke FS. et al. Effects of physical training on the myocardium of oxariectomized LDLr knockout mice: MMP 2/9, collagen I/III, inflammation and oxidative stress. Arq Bras Cardiol 2020; 114 (01) 100-105 DOI: 10.5935/abc.20190223.
- 14 Mandarim-de-Lacerda CA. Stereological tools in biomedical research. An Acad Bras Cienc 2003; 75 (04) 469-486 DOI: 10.1590/s0001-37652003000400006.
- 15 Novelle MG, Vázquez MJ, Peinado JR. et al. Sequential exposure to obesogenic factors in females rats: from physiological changes to lipid metabolism in liver and mesenteric adipose tissue. Sci Rep 2017; 7: 46194 DOI: 10.1038/srep46194.
- 16 Sutjarit N, Sueajai J, Boonmuen N. et al. Curcuma comosa reduces visceral adipose tissue and improves dyslipidemia in ovariectomized rats. J Ethnopharmacol 2018; 215: 167-175 DOI: 10.1016/j.jep.2017.12.027.
- 17 Fatima LA, Campello RS, Barreto-Andrade JN. et al. Estradiol stimulates adipogenesis and Slc2a4/GLUT4 expression via ESR1-mediated activation of CEBPA. Mol Cell Endocrinol 2019; 498: 110447 DOI: 10.1016/j.mce.2019.05.006.
- 18 Stanford KI, Goodyear LJ. Exercise regulation of adipose tissue. Adipocyte 2016; 5 (02) 153-162 DOI: 10.1080/21623945.2016.1191307.
- 19 Pagnotti GM, Styner M, Uzer G. et al. Combating osteoporosis and obesity with exercise: leveraging cell mechanosensitivity. Nat Rev Endocrinol 2019; 15 (06) 339-355 DOI: 10.1038/s41574-019-0170-1.
- 20 Stanford KI, Middelbeek RJ, Goodyear LJ. Exercise effects on white adipose tissue: beiging and metabolic adaptations. Diabetes 2015; 64 (07) 2361-2368 DOI: 10.2337/db15-0227.
- 21 Medeiros CS, de Sousa Neto IV, Silva KKS. et al. The effects of high-protein diet and resistance training on glucose control and inflammatory profile of visceral adipose tissue in rats. Nutrients 2021; 13 (06) 1969 DOI: 10.3390/nu13061969.
- 22 Rodrigues MFC, Ferreira FC, Silva-Magosso NS. et al. Effects of resistance training and estrogen replacement on adipose tissue inflammation in ovariectomized rats. Appl Physiol Nutr Metab 2017; 42 (06) 605-612 DOI: 10.1139/apnm-2016-0443.
- 23 Alfonso L, Mendizabal JA. Caracterización de la distribución del tamaño de los adipocitos para el estudio del tejido adiposo en producción animal. ITEA 2016; 112 (02) 147-161 DOI: 10.12706/itea.2016.010.
- 24 Ghaben AL, Scherer PE. Adipogenesis and metabolic health. Nat Rev Mol Cell Biol 2019; 20 (04) 242-258 DOI: 10.1038/s41580-018-0093-z.
- 25 Murphy J, Moullec G, Santosa S. Factors associated with adipocyte size reduction after weight loss interventions for overweight and obesity: a systematic review and meta-regression. Metabolism 2017; 67: 31-40 DOI: 10.1016/j.metabol.2016.09.009.
- 26 Ibáñez CA, Vázquez-Martínez M, León-Contreras JC. et al. Different statistical approaches to characterization of adipocyte size in offspring of obese rats: effects of maternal or offspring exercise intervention. Front Physiol 2018; 9: 1571 DOI: 10.3389/fphys.2018.01571.
- 27 Jung UJ, Choi MS. Obesity and its metabolic complications: the role of adipokines and the relationship between obesity, inflammation, insulin resistance, dyslipidemia and nonalcoholic fatty liver disease. Int J Mol Sci 2014; 15 (04) 6184-6223 DOI: 10.3390/ijms15046184.
- 28 Welte MA. Expanding roles for lipid droplets. Curr Biol 2015; 25 (11) R470-R481 DOI: 10.1016/j.cub.2015.04.004.
- 29 Sharma M, Schlegel M, Brown EJ. et al. Netrin-1 alters adipose tissue macrophage fate and function in obesity. Immunometabolism 2019; 1 (02) e190010 DOI: 10.20900/immunometab20190010.
- 30 Majdoubi A, Kishta OA, Thibodeau J. Role of antigen presentation in the production of pro-inflammatory cytokines in obese adipose tissue. Cytokine 2016; 82: 112-121 DOI: 10.1016/j.cyto.2016.01.023.
- 31 Virtue S, Masoodi M, de Weijer BAM. et al. Prostaglandin profiling reveals a role for haematopoietic prostaglandin D synthase in adipose tissue macrophage polarisation in mice and humans. Int J Obes 2015; 39 (07) 1151-1160 DOI: 10.1038/ijo.2015.34.
- 32 Walsh NP, Gleeson M, Shephard RJ. et al. Position statement. Part one: Immune function and exercise. Exerc Immunol Rev 2011; 17: 6-63