CC BY-NC-ND 4.0 · Journal of Diabetes and Endocrine Practice 2023; 06(01): 003-010
DOI: 10.1055/s-0043-1763276
Review Article

GAED Medal Lecture 2022: Challenging the Dogma in Diabetic Neuropathy and Beyond

Rayaz A. Malik
1   Department of Medicine, Research Division, Weill Cornell Medicine-Qatar, Education City, Doha, Qatar
› Author Affiliations
Funding None.

Abstract

Dogma, according to the Britannica Dictionary, is ”a belief or set of beliefs that is accepted by the members of a group without being questioned or doubted.” Thus, in 2001, the heretical idea that corneal confocal microscopy (CCM)—an ophthalmic instrument—could be used to assess neurological disease truly challenged the dogma. The repurposing of CCM to study diabetic neuropathy and other neurodegenerative diseases is a wonderful illustration of being in the right time and place and having honest and open conversations between very different medical disciplines to 'challenge the dogma.' The Gulf Association of Diabetes and Endocrinology (GAED) Medal Lecture in 2022 and the European Association for the Study of Diabetes (EASD) Camillo Golgi Prize in 2019 have enabled me to tell my personal story in relation to the past, present, and future of CCM as a clinical tool to diagnose and predict neurodegeneration and identify nerve regeneration in clinical trials of new therapies for peripheral and central neurodegenerative diseases.



Publication History

Article published online:
05 April 2023

© 2023. Gulf Association of Endocrinology and Diabetes (GAED). This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)

Thieme Medical and Scientific Publishers Pvt. Ltd.
A-12, 2nd Floor, Sector 2, Noida-201301 UP, India

 
  • References

  • 1 Minsky M. Memoir on inventing the confocal scanning microscope. Scanning 1988; 10: 128-138
  • 2 Petráň M, Hadravský M, Egger MD, Galambos R. Tandem-scanning reflected-light microscope. J Opt Soc Am 1968; 58: 661-664
  • 3 Dilly PN. Tandem scanning reflected light microscopy of the cornea. Scanning 1988; 10: 153-156
  • 4 Oliveira-Soto L, Efron N. Morphology of corneal nerves using confocal microscopy. Cornea 2001; 20 (04) 374-384
  • 5 Lambiase A, Rama P, Bonini S, Caprioglio G, Aloe L. Topical treatment with nerve growth factor for corneal neurotrophic ulcers. N Engl J Med 1998; 338 (17) 1174-1180
  • 6 Apfel SC, Schwartz S, Adornato BT. et al. Efficacy and safety of recombinant human nerve growth factor in patients with diabetic polyneuropathy: a randomized controlled trial. rhNGF Clinical Investigator Group. JAMA 2000; 284 (17) 2215-2221
  • 7 Rosenberg ME, Tervo TM, Immonen IJ, Müller LJ, Grönhagen-Riska C, Vesaluoma MH. Corneal structure and sensitivity in type 1 diabetes mellitus. Invest Ophthalmol Vis Sci 2000; 41 (10) 2915-2921
  • 8 Malik RA, Newrick PG, Sharma AK. et al. Microangiopathy in human diabetic neuropathy: relationship between capillary abnormalities and the severity of neuropathy. Diabetologia 1989; 32 (02) 92-102
  • 9 Malik RA, Kallinikos P, Abbott CA. et al. Corneal confocal microscopy: a non-invasive surrogate of nerve fibre damage and repair in diabetic patients. Diabetologia 2003; 46 (05) 683-688
  • 10 Edwards K, Pritchard N, Vagenas D, Russell A, Malik RA, Efron N. Utility of corneal confocal microscopy for assessing mild diabetic neuropathy: baseline findings of the LANDMark study. Clin Exp Optom 2012; 95 (03) 348-354
  • 11 Perkins BA, Lovblom LE, Bril V. et al. Corneal confocal microscopy for identification of diabetic sensorimotor polyneuropathy: a pooled multinational consortium study. Diabetologia 2018; 61 (08) 1856-1861
  • 12 Gad H, Petropoulos IN, Khan A. et al. Corneal confocal microscopy for the diagnosis of diabetic peripheral neuropathy: A systematic review and meta-analysis. J Diabetes Investig 2022; 13 (01) 134-147
  • 13 Perkins BA, Lovblom LE, Lewis EJH. et al. Corneal confocal microscopy predicts the development of diabetic neuropathy: A longitudinal diagnostic multinational consortium study. Diabetes Care 2021; 44 (09) 2107-2114
  • 14 Tavakoli M, Mitu-Pretorian M, Petropoulos IN. et al. Corneal confocal microscopy detects early nerve regeneration in diabetic neuropathy after simultaneous pancreas and kidney transplantation. Diabetes 2013; 62 (01) 254-260
  • 15 Azmi S, Jeziorska M, Ferdousi M. et al. Early nerve fibre regeneration in individuals with type 1 diabetes after simultaneous pancreas and kidney transplantation. Diabetologia 2019; 62 (08) 1478-1487
  • 16 Tavakoli M, Ferdousi M, Petropoulos IN. et al. Normative values for corneal nerve morphology assessed using corneal confocal microscopy: a multinational normative data set. Diabetes Care 2015; 38 (05) 838-843
  • 17 Ferdousi M, Kalteniece A, Azmi S. et al. diagnosis of neuropathy and risk factors for corneal nerve loss in type 1 and type 2 diabetes: A corneal confocal microscopy study. Diabetes Care 2021; 44 (01) 150-156
  • 18 Ferdousi M, Romanchuk K, Mah JK. et al. Early corneal nerve fibre damage and increased Langerhans cell density in children with type 1 diabetes mellitus. Sci Rep 2019; 9 (01) 8758
  • 19 Gad H, Al-Jarrah B, Saraswathi S. et al. Corneal nerve loss in children with type 1 diabetes mellitus without retinopathy or microalbuminuria. J Diabetes Investig 2020; 11 (06) 1594-1601
  • 20 Petropoulos IN, Green P, Chan AW. et al. Corneal confocal microscopy detects neuropathy in patients with type 1 diabetes without retinopathy or microalbuminuria. PLoS One 2015; 10 (04) e0123517
  • 21 Asghar O, Petropoulos IN, Alam U. et al. Corneal confocal microscopy detects neuropathy in subjects with impaired glucose tolerance. Diabetes Care 2014; 37 (09) 2643-2646
  • 22 De Clerck EEB, Schouten JSAG, Berendschot TTJM. et al. Reduced corneal nerve fibre length in prediabetes and type 2 diabetes: the Maastricht Study. Acta Ophthalmol 2020; 98 (05) 485-491
  • 23 Ziegler D, Papanas N, Zhivov A. et al; German Diabetes Study (GDS) Group. Early detection of nerve fiber loss by corneal confocal microscopy and skin biopsy in recently diagnosed type 2 diabetes. Diabetes 2014; 63 (07) 2454-2463
  • 24 Kalteniece A, Ferdousi M, Azmi S. et al. Corneal confocal microscopy detects small nerve fibre damage in patients with painful diabetic neuropathy. Sci Rep 2020; 10 (01) 3371
  • 25 Kalteniece A, Ferdousi M, Azmi S. et al. Corneal nerve loss is related to the severity of painful diabetic neuropathy. Eur J Neurol 2022; 29 (01) 286-294
  • 26 Maddaloni E, Sabatino F, Del Toro R. et al. In vivo corneal confocal microscopy as a novel non-invasive tool to investigate cardiac autonomic neuropathy in Type 1 diabetes. Diabet Med 2015; 32 (02) 262-266
  • 27 Wang H, Fan D, Wang W, Zhang S, Wang X. Early diagnosis of diabetic autonomic neuropathy by corneal confocal microscopy [article in Chinese]. Zhonghua Yi Xue Za Zhi 2015; 95 (35) 2851-2856
  • 28 Ishibashi F, Kojima R, Taniguchi M, Kosaka A, Uetake H, Tavakoli M. The preferential impairment of pupil constriction stimulated by blue light in patients with type 2 diabetes without autonomic neuropathy. J Diabetes Res 2017; 2017: 6069730
  • 29 Misra SL, Craig JP, Patel DV. et al. In vivo confocal microscopy of corneal nerves: an ocular biomarker for peripheral and cardiac autonomic neuropathy in type 1 diabetes mellitus. Invest Ophthalmol Vis Sci 2015; 56 (09) 5060-5065
  • 30 Tavakoli M, Begum P, McLaughlin J, Malik RA. Corneal confocal microscopy for the diagnosis of diabetic autonomic neuropathy. Muscle Nerve 2015; 52 (03) 363-370
  • 31 Azmi S, Ferdousi M, Alam U. et al. Small-fibre neuropathy in men with type 1 diabetes and erectile dysfunction: a cross-sectional study. Diabetologia 2017; 60 (06) 1094-1101
  • 32 Dhage S, Ho JH, Ferdousi M. et al. Small fibre pathology is associated with erectile dysfunction in men with type 2 diabetes. Diabetes Metab Res Rev 2020; 36 (03) e3263
  • 33 Pritchard N, Edwards K, Russell AW, Perkins BA, Malik RA, Efron N. Corneal confocal microscopy predicts 4-year incident peripheral neuropathy in type 1 diabetes. Diabetes Care 2015; 38 (04) 671-675
  • 34 Lovblom LE, Halpern EM, Wu T. et al. In vivo corneal confocal microscopy and prediction of future-incident neuropathy in type 1 diabetes: a preliminary longitudinal analysis. Can J Diabetes 2015; 39 (05) 390-397
  • 35 Lewis EJH, Lovblom LE, Ferdousi M. et al. Rapid corneal nerve fiber loss: a marker of diabetic neuropathy onset and progression. Diabetes Care 2020; 43 (08) 1829-1835
  • 36 Dehghani C, Russell AW, Perkins BA. et al. A rapid decline in corneal small fibers and occurrence of foot ulceration and Charcot foot. J Diabetes Complications 2016; 30 (08) 1437-1439
  • 37 Ferdousi M, Azmi S, Petropoulos IN. et al. Corneal confocal microscopy detects small fibre neuropathy in patients with upper gastrointestinal cancer and nerve regeneration in chemotherapy induced peripheral neuropathy. PLoS One 2015; 10 (10) e0139394
  • 38 Bennedsgaard K, Ventzel L, Andersen NT. et al. Oxaliplatin- and docetaxel-induced polyneuropathy: clinical and neurophysiological characteristics. J Peripher Nerv Syst 2020; 25 (04) 377-387
  • 39 Chiang JCB, Goldstein D, Trinh T. et al. A cross-sectional study of sub-basal corneal nerve reduction following neurotoxic chemotherapy. Transl Vis Sci Technol 2021; 10 (01) 24
  • 40 Stettner M, Hinrichs L, Guthoff R. et al. Corneal confocal microscopy in chronic inflammatory demyelinating polyneuropathy. Ann Clin Transl Neurol 2015; 3 (02) 88-100
  • 41 Motte J, Grüter T, Fisse AL. et al. Corneal inflammatory cell infiltration predicts disease activity in chronic inflammatory demyelinating polyneuropathy. Sci Rep 2021; 11 (01) 15150
  • 42 Pitarokoili K, Sturm D, Labedi A. et al. Neuroimaging markers of clinical progression in chronic inflammatory demyelinating polyradiculoneuropathy. Ther Adv Neurol Disord 2019; 12: 1756286419855485
  • 43 Kemp HI, Petropoulos IN, Rice ASC. et al. use of corneal confocal microscopy to evaluate small nerve fibers in patients with human immunodeficiency virus. JAMA Ophthalmol 2017; 135 (07) 795-800
  • 44 Chen X, Graham J, Petropoulos IN. et al. Corneal nerve fractal dimension: a novel corneal nerve metric for the diagnosis of diabetic sensorimotor polyneuropathy. Invest Ophthalmol Vis Sci 2018; 59 (02) 1113-1118
  • 45 Freeman R, Gewandter JS, Faber CG. et al. Idiopathic distal sensory polyneuropathy: ACTTION diagnostic criteria. Neurology 2020; 95 (22) 1005-1014
  • 46 Tavakoli M, Marshall A, Pitceathly R. et al. Corneal confocal microscopy: a novel means to detect nerve fibre damage in idiopathic small fibre neuropathy. Exp Neurol 2010; 223 (01) 245-250
  • 47 Egenolf N, Zu Altenschildesche CM, Kreß L. et al. Diagnosing small fiber neuropathy in clinical practice: a deep phenotyping study. Ther Adv Neurol Disord 2021;14:17562864211004318
  • 48 Tavakoli M, Marshall A, Banka S. et al. Corneal confocal microscopy detects small-fiber neuropathy in Charcot-Marie-Tooth disease type 1A patients. Muscle Nerve 2012; 46 (05) 698-704
  • 49 Perini I, Tavakoli M, Marshall A, Minde J, Morrison I. Rare human nerve growth factor-β mutation reveals relationship between C-afferent density and acute pain evaluation. J Neurophysiol 2016; 116 (02) 425-430
  • 50 Pagovich OE, Vo ML, Zhao ZZ. et al. Corneal confocal microscopy: neurologic disease biomarker in Friedreich ataxia. Ann Neurol 2018; 84 (06) 893-904
  • 51 Barnett C, Alon T, Abraham A. et al. Evidence of small-fiber neuropathy in neurofibromatosis type 1. Muscle Nerve 2019; 60 (06) 673-678
  • 52 Plante-Bordeneuve V. Transthyretin familial amyloid polyneuropathy: an update. J Neurol 2018; 265 (04) 976-983
  • 53 Rousseau A, Cauquil C, Dupas B. et al. Potential role of in vivo confocal microscopy for imaging corneal nerves in transthyretin familial amyloid polyneuropathy. JAMA Ophthalmol 2016; 134 (09) 983-989
  • 54 Zhang Y, Liu Z, Zhang Y. et al. Corneal sub-basal whorl-like nerve plexus: a landmark for early and follow-up evaluation in transthyretin familial amyloid polyneuropathy. Eur J Neurol 2021; 28 (02) 630-638
  • 55 Politei JM, Durand C, Schenone AB. Small fiber neuropathy in Fabry disease: a review of pathophysiology and treatment. J Inborn Errors Metab Screening 2016; 4: 2326409816661351
  • 56 Tavakoli M, Marshall A, Thompson L. et al. Corneal confocal microscopy: a novel noninvasive means to diagnose neuropathy in patients with Fabry disease. Muscle Nerve 2009; 40 (06) 976-984
  • 57 Bitirgen G, Turkmen K, Malik RA, Ozkagnici A, Zengin N. Corneal confocal microscopy detects corneal nerve damage and increased dendritic cells in Fabry disease. Sci Rep 2018; 8 (01) 12244
  • 58 Sharma S, Tobin V, Vas PRJ, Rayman G. The LDIFLARE and CCM methods demonstrate early nerve fibre abnormalities in untreated hypothyroidism: A prospective study. J Clin Endocrinol Metab 2018; 103 (08) 3094-3102
  • 59 Ramírez M, Martínez-Martínez LA, Hernández-Quintela E, Velazco-Casapía J, Vargas A, Martínez-Lavín M. Small fiber neuropathy in women with fibromyalgia. An in vivo assessment using corneal confocal bio-microscopy. Semin Arthritis Rheum 2015; 45 (02) 214-219
  • 60 Oudejans L, He X, Niesters M, Dahan A, Brines M, van Velzen M. Cornea nerve fiber quantification and construction of phenotypes in patients with fibromyalgia. Sci Rep 2016; 6: 23573
  • 61 Erkan Turan K, Kocabeyoglu S, Unal-Cevik I, Bezci F, Akinci A, Irkec M. Ocular surface alterations in the context of corneal in vivo confocal microscopic characteristics in patients with fibromyalgia. Cornea 2018; 37 (02) 205-210
  • 62 Evdokimov D, Frank J, Klitsch A. et al. Reduction of skin innervation is associated with a severe fibromyalgia phenotype. Ann Neurol 2019; 86 (04) 504-516
  • 63 Anjos R, Vieira L, Sousa A, Maduro V, Alves N, Candelaria P. Peripheral neuropathy in Parkinson disease: an in vivo confocal microscopy study. Acta Ophthalmol 2014; 92 DOI: 10.1111/j.1755-3768.2014.2433.x.
  • 64 Kass-Iliyya L, Javed S, Gosal D. et al. Small fiber neuropathy in Parkinson's disease: A clinical, pathological and corneal confocal microscopy study. Parkinsonism Relat Disord 2015; 21 (12) 1454-1460
  • 65 Podgorny PJ, Suchowersky O, Romanchuk KG, Feasby TE. Evidence for small fiber neuropathy in early Parkinson's disease. Parkinsonism Relat Disord 2016; 28: 94-99
  • 66 Misra SL, Kersten HM, Roxburgh RH, Danesh-Meyer HV, McGhee CN. Corneal nerve microstructure in Parkinson's disease. J Clin Neurosci 2017; 39: 53-58
  • 67 Arrigo A, Rania L, Calamuneri A. et al. Early corneal innervation and trigeminal alterations in Parkinson disease: a pilot study. Cornea 2018; 37 (04) 448-454
  • 68 Avetisov SE, Karabanov AV, Surnina ZV, Gamidov AA. Changes in corneal nerves fibers in the early stages of Parkinson's disease according to in vivo confocal microscopy (preliminary report) [article in Chinese]. Vestn Oftalmol 2020; 136 (5. Vyp. 2): 191-196
  • 69 Lim SH, Ferdousi M, Kalteniece A. et al. Corneal confocal microscopy detects small fibre neurodegeneration in Parkinson's disease using automated analysis. Sci Rep 2020; 10 (01) 20147
  • 70 Che NN, Ding GX, Chen SY. et al. Measurement of corneal nerve fiber parameters in patients with Parkinson's disease [article in Chinese]. Zhonghua Yi Xue Za Zhi 2021; 101 (07) 498-503
  • 71 Lim SH, Ferdousi M, Kalteniece A. et al. Corneal confocal microscopy identifies Parkinson's disease with more rapid motor progression. Mov Disord 2021; 36 (08) 1927-1934
  • 72 Mikolajczak J, Zimmermann H, Kheirkhah A. et al. Patients with multiple sclerosis demonstrate reduced subbasal corneal nerve fibre density. Mult Scler 2017; 23 (14) 1847-1853
  • 73 Bitirgen G, Akpinar Z, Malik RA, Ozkagnici A. Use of corneal confocal microscopy to detect corneal nerve loss and increased dendritic cells in patients with multiple sclerosis. JAMA Ophthalmol 2017; 135 (07) 777-782
  • 74 Petropoulos IN, Kamran S, Li Y. et al. Corneal confocal microscopy: an imaging endpoint for axonal degeneration in multiple sclerosis. Invest Ophthalmol Vis Sci 2017; 58 (09) 3677-3681
  • 75 Ferrari G, Grisan E, Scarpa F. et al. Corneal confocal microscopy reveals trigeminal small sensory fiber neuropathy in amyotrophic lateral sclerosis. Front Aging Neurosci 2014; 6: 278
  • 76 Fu J, He J, Zhang Y. et al. Small fiber neuropathy for assessment of disease severity in amyotrophic lateral sclerosis: corneal confocal microscopy findings. Orphanet J Rare Dis 2022; 17 (01) 7
  • 77 Gad H, Khan A, Akhtar N. et al. Corneal nerve and endothelial cell damage in patients with transient ischemic attack and minor ischemic stroke. PLoS One 2019; 14 (03) e0213319
  • 78 Khan A, Kamran S, Akhtar N. et al. Corneal confocal microscopy detects a reduction in corneal endothelial cells and nerve fibres in patients with acute ischemic stroke. Sci Rep 2018; 8 (01) 17333
  • 79 Khan A, Akhtar N, Kamran S. et al. Corneal confocal microscopy identifies greater corneal nerve damage in patients with a recurrent compared to first ischemic stroke. PLoS One 2020; 15 (04) e0231987
  • 80 Kamran S, Khan A, Salam A. et al. Cornea: a window to white matter changes in stroke; corneal confocal microscopy a surrogate marker for the presence and severity of white matter hyperintensities in ischemic stroke. J Stroke Cerebrovasc Dis 2020; 29 (03) 104543
  • 81 Ponirakis G, Al Hamad H, Sankaranarayanan A. et al. Association of corneal nerve fiber measures with cognitive function in dementia. Ann Clin Transl Neurol 2019; 6 (04) 689-697
  • 82 Al-Janahi E, Ponirakis G, Al Hamad H. et al. Corneal nerve and brain imaging in mild cognitive impairment and dementia. J Alzheimers Dis 2020; 77 (04) 1533-1543
  • 83 Ponirakis G, Elsotouhy A, Al Hamad H. et al. Association of cerebral ischemia with corneal nerve loss and brain atrophy in MCI and dementia. Front Neurosci 2021; 15: 690896
  • 84 Kinard KI, Smith AG, Singleton JR. et al. Chronic migraine is associated with reduced corneal nerve fiber density and symptoms of dry eye. Headache 2015; 55 (04) 543-549
  • 85 Shetty R, Deshmukh R, Shroff R, Dedhiya C, Jayadev C. Subbasal nerve plexus changes in chronic migraine. Cornea 2018; 37 (01) 72-75
  • 86 Lee JI, Böcking T, Holle-Lee D. et al. Corneal confocal microscopy demonstrates corneal nerve loss in patients with trigeminal neuralgia. Front Neurol 2020; 11: 661
  • 87 O'Neill F, Marshall A, Ferdousi M, Malik RA. Corneal confocal microscopy detects small-fiber neuropathy in burning mouth syndrome: a cross-sectional study. J Oral Facial Pain Headache 2019; 33 (03) 337-341
  • 88 Mehra S, Tavakoli M, Kallinikos PA. et al. Corneal confocal microscopy detects early nerve regeneration after pancreas transplantation in patients with type 1 diabetes. Diabetes Care 2007; 30 (10) 2608-2612
  • 89 Tavakoli M, Kallinikos P, Iqbal A. et al. Corneal confocal microscopy detects improvement in corneal nerve morphology with an improvement in risk factors for diabetic neuropathy. Diabet Med 2011; 28 (10) 1261-1267
  • 90 Adam S, Azmi S, Ho JH. et al. Improvements in diabetic neuropathy and nephropathy after bariatric surgery: a prospective cohort study. Obes Surg 2021; 31 (02) 554-563
  • 91 Azmi S, Ferdousi M, Liu Y. et al. Bariatric surgery leads to an improvement in small nerve fibre damage in subjects with obesity. Int J Obes 2021; 45 (03) 631-638
  • 92 Dahan A, Dunne A, Swartjes M. et al. ARA 290 improves symptoms in patients with sarcoidosis-associated small nerve fiber loss and increases corneal nerve fiber density. Mol Med 2013; 19 (01) 334-345
  • 93 Culver DA, Dahan A, Bajorunas D. et al. Cibinetide improves corneal nerve fiber abundance in patients with sarcoidosis-associated small nerve fiber loss and neuropathic pain. Invest Ophthalmol Vis Sci 2017; 58 (06) BIO52-BIO60
  • 94 Brines M, Dunne AN, van Velzen M. et al. ARA 290, a nonerythropoietic peptide engineered from erythropoietin, improves metabolic control and neuropathic symptoms in patients with type 2 diabetes. Mol Med 2015; 20 (01) 658-666
  • 95 Lewis EJH, Perkins BA, Lovblom LE, Bazinet RP, Wolever TMS, Bril V. Effect of omega-3 supplementation on neuropathy in type 1 diabetes: A 12-month pilot trial. Neurology 2017; 88 (24) 2294-2301
  • 96 Britten-Jones AC, Kamel JT, Roberts LJ. et al. Investigating the neuroprotective effect of oral omega-3 fatty acid supplementation in type 1 diabetes (nPROOFS1): A randomized placebo-controlled trial. Diabetes 2021; 70 (08) 1794-1806
  • 97 Ponirakis G, Abdul-Ghani MA, Jayyousi A. et al. Effect of treatment with exenatide and pioglitazone or basal-bolus insulin on diabetic neuropathy: a substudy of the Qatar Study. BMJ Open Diabetes Res Care 2020; 8 (01) e001420
  • 98 Pritchard N, Edwards K, Efron N. Non-contact laser-scanning confocal microscopy of the human cornea in vivo. Cont Lens Anterior Eye 2014; 37 (01) 44-48
  • 99 Edwards K, Pritchard N, Gosschalk K. et al. Wide-field assessment of the human corneal subbasal nerve plexus in diabetic neuropathy using a novel mapping technique. Cornea 2012; 31 (09) 1078-1082
  • 100 Kheirkhah A, Muller R, Mikolajczak J. et al. Comparison of standard versus wide-field composite images of the corneal subbasal layer by in vivo confocal microscopy. Invest Ophthalmol Vis Sci 2015; 56 (10) 5801-5807
  • 101 Allgeier S, Maier S, Mikut R. et al. Mosaicking the subbasal nerve plexus by guided eye movements. Invest Ophthalmol Vis Sci 2014; 55 (09) 6082-6089
  • 102 Petropoulos IN, Ferdousi M, Marshall A. et al. The inferior whorl for detecting diabetic peripheral neuropathy using corneal confocal microscopy. Invest Ophthalmol Vis Sci 2015; 56 (04) 2498-2504
  • 103 Petropoulos IN, Al-Mohammedi A, Chen X. et al. The utility of corneal nerve fractal dimension analysis in peripheral neuropathies of different etiology. Transl Vis Sci Technol 2020; 9 (09) 43
  • 104 Petropoulos IN, Alam U, Fadavi H. et al. Rapid automated diagnosis of diabetic peripheral neuropathy with in vivo corneal confocal microscopy. Invest Ophthalmol Vis Sci 2014; 55 (04) 2071-2078
  • 105 Dehghani C, Pritchard N, Edwards K, Russell AW, Malik RA, Efron N. Fully automated, semiautomated, and manual morphometric analysis of corneal subbasal nerve plexus in individuals with and without diabetes. Cornea 2014; 33 (07) 696-702
  • 106 Williams BM, Borroni D, Liu R. et al. An artificial intelligence-based deep learning algorithm for the diagnosis of diabetic neuropathy using corneal confocal microscopy: a development and validation study. Diabetologia 2020; 63 (02) 419-430
  • 107 Salahouddin T, Petropoulos IN, Ferdousi M. et al. Artificial intelligence-based classification of diabetic peripheral neuropathy from corneal confocal microscopy images. Diabetes Care 2021; 44 (07) e151-e153