CC BY 4.0 · Arq Neuropsiquiatr 2023; 81(05): 502-509
DOI: 10.1055/s-0043-1763489
View and Review

Fundoscopy in the smartphone age: current ophthalmoscopy methods in neurology

A fundoscopia na era dos smartphones: métodos atuais de oftalmoscopia na neurologia
1   Universidade Federal do Rio de Janeiro, Hospital Federal dos Servidores do Estado, Rio de Janeiro RJ, Brazil.
› Author Affiliations

Abstract

The observation of the human retina in vivo began in 1851 after the invention of the first ophthalmoscope by the German physicist Hermann von Helmholtz. In the following decades, direct and indirect ophthalmoscopy, with the use of ophthalmoscopes and condensing lenses, respectively, became part of the clinical examination, especially in ophthalmology and neurology. Today, over 170 years later, many ophthalmoscopes and condensing lenses exist on the market. Nevertheless, ophthalmoscopy is still not widely adopted as part of the physical exam of general practitioners, and the teaching of ophthalmoscopy in medical school remains challenging. Studies have shown that students prefer using newer ophthalmoscope models or condensing lenses during training, but most do not feel confident in performing ophthalmoscopy afterwards, regardless of the models used. Also, few students acquire ophthalmoscopes for their future practice, and clinical trials have not clearly demonstrated superiority of newer ophthalmoscope models over the conventional ones in diagnostic accuracy. The technological improvement of smartphone cameras in recent years has made it feasible to photograph the fundus of the eye using ophthalmoscopes or condensing lenses, reducing the need for retinographs and similar equipment. Smartphone assisted indirect fundoscopy is becoming increasingly popular. This approach allows adequate identification of the structures of the fundus, is cost-efficient, easy to implement, and permits easy recording and sharing of the images obtained, which is useful for case discussions and medical teaching. However, controlled clinical trials validating this method in the evaluation of optic nerve pathologies are needed.

Resumo

A observação da retina humana in vivo começou em 1851, após a invenção do primeiro oftalmoscópio pelo físico alemão Hermann von Helmholtz. Nas décadas seguintes, a oftalmoscopia direta e indireta, com o uso de oftalmoscópios e lentes condensadoras, respectivamente, tornou-se parte do exame clínico, especialmente em oftalmologia e neurologia. Hoje, mais de 170 anos depois, diversos oftalmoscópios e lentes condensadoras estão disponíveis no mercado. No entanto, a oftalmoscopia ainda não é amplamente realizada no exame físico de médicos generalistas e o ensino da oftalmoscopia na faculdade de medicina ainda é desafiador. Estudos mostram que estudantes preferem usar modelos novos de oftalmoscópio ou lentes condensadoras durante seu treinamento, porém a maioria dos estudantes não se sente suficientemente confiante em realizar oftalmoscopia mais tarde, mesmo quando utilizam os modelos mais novos. Além disso, poucos alunos adquirem oftalmoscópios para sua prática futura, e ensaios clínicos não demonstraram uma clara superioridade dos novos modelos de oftalmoscópio em relação ao modelo convencional em acurácia diagnóstica. O aperfeiçoamento tecnológico das câmeras de smartphones nos últimos anos tornou possível fotografar o fundo do olho utilizando oftalmoscópios ou lentes condensadoras, reduzindo a necessidade de retinógrafos e equipamentos similares. A fundoscopia indireta realizada com smartphones vem se tornando cada vez mais popular. Esta abordagem permite a adequada identificação das estruturas do fundo do olho, é custo-efetiva, fácil de implementar e permite o fácil registro e compartilhamento das imagens obtidas, o que é útil para discussão de casos clínicos e para o ensino médico. Entretanto, ensaios clínicos controlados para a validação deste método na avaliação de patologias do nervo óptico são necessários.



Publication History

Received: 05 May 2022

Accepted: 10 September 2022

Article published online:
31 May 2023

© 2023. Academia Brasileira de Neurologia. This is an open access article published by Thieme under the terms of the Creative Commons Attribution 4.0 International License, permitting copying and reproduction so long as the original work is given appropriate credit (https://creativecommons.org/licenses/by/4.0/)

Thieme Revinter Publicações Ltda.
Rua do Matoso 170, Rio de Janeiro, RJ, CEP 20270-135, Brazil

 
  • References

  • 1 von Helmholtz H. . Beschreibung eines Augen-Spiegels: zur Untersuchung der Netzhaut im lebenden Auge. Berlin: A. Förstner'sche Verlagsbuchhandlung (P. Jeanrenaud); 1851:43, [4] p.
  • 2 Sherman SE. The history of the ophthalmoscope. Doc Ophthalmol 1989; 71 (02) 221-228
  • 3 Katherine M, Michael W. Direct Ophthalmoscopy… Soon to be Forgotten?. Ulster Med J 2019; 88 (02) 115-117
  • 4 Mackay DD, Garza PS, Bruce BB, Newman NJ, Biousse V. The demise of direct ophthalmoscopy: A modern clinical challenge. Neurol Clin Pract 2015; 5 (02) 150-157
  • 5 Jacklin HN. 125 years of indirect ophthalmoscopy. Ann Ophthalmol 1979; 11 (04) 643-646 , 649–650
  • 6 Leung EH, Rosen R. . Fundus Imaging in Wide-Field: A Brief Historical Journey. In: Kozak I, Arevalo JF, eds. Atlas of Wide-Field Retinal Angiography and Imaging [Internet]. Cham: Springer International Publishing; 2016 [cited 2022 Feb 14]. p. 1–25. Available from: https://doi.org/10.1007/978-3-319-17864-6_1
  • 7 Wiguna DY, Widjaja SA, Sasono W, Firmansjah M, Yustiarini I, Prakosa AD. et al. Condensing lens on binocular indirect ophthalmoscopy and slit-lamp biomicroscopy. International Journal of Retina 2019; 2 (02) 90-96
  • 8 Lectures on the Diseases of the Nervous System 1Lectures on the Diseases of the Nervous System, delivered at La Salpêtrière.. By J. M. Charcot. Translated by George Sigerson, M.D. Sydenham Society. London, 1877. Br Foreign Med Chir Rev. 1877; Jul;60 (119) 180-1
  • 9 Mottow-Lippa L, Boker JR, Stephens F. A prospective study of the longitudinal effects of an embedded specialty curriculum on physical examination skills using an ophthalmology model. Acad Med 2009; 84 (11) 1622-1630
  • 10 Mamtora S, Sandinha MT, Ajith A, Song A, Steel DHW. Smart phone ophthalmoscopy: a potential replacement for the direct ophthalmoscope. Eye (Lond) 2018; 32 (11) 1766-1771
  • 11 McComiskie JE, Greer RM, Gole GA. Panoptic versus conventional ophthalmoscope. Clin Exp Ophthalmol 2004; 32 (03) 238-242
  • 12 Kelly LP, Garza PS, Bruce BB, Graubart EB, Newman NJ, Biousse V. Teaching ophthalmoscopy to medical students (the TOTeMS study). Am J Ophthalmol 2013; 156 (05) 1056-1061.e10
  • 13 Blaikie A, Sandford-Smith J, Tuteja SY, Williams CD, O'Callaghan C. Arclight: a pocket ophthalmoscope for the 21st century. BMJ 2016; 355: i6637
  • 14 Hytiris ML, Fioratou E, Gillan SN. The Arclight vs. traditional ophthalmoscope: a cross-over trial. Eye (Lond) 2021; 35 (03) 831-837
  • 15 Ayub G, Souza RB, de Albuquerque AM, de Vasconcellos JPC. Comparison of conventional and wide field direct ophthalmoscopy on medical students' self-confidence for fundus examination: a 1-year follow-up. BMC Med Educ 2021; 21 (01) 507
  • 16 Tan A, Mallika P, Aziz S, Asokumaran T, Intan G, Faridah H. Comparison between the panoptic ophthalmoscope and the conventional direct ophthalmoscope in the detection of sight threatening diabetic retinopathy: the kuching diabetic eye study. Malays Fam Physician 2010; 5 (02) 83-90
  • 17 Barikian A, Haddock L. Smartphone Assisted Fundus Fundoscopy/Photography. Current Ophthalmology Reports 2018; 6: 46-52
  • 18 iEXAMINER [Internet]. . [cited 2022 Apr 3]. Available from: https://www.welchallyn.com/en/microsites/iexaminer.html
  • 19 Slit Lamp Photography Systems for iPads & Smartphones by EyePhotoDoc . [Internet]. [cited 2022 Apr 3]. Available from: https://www.eyephotodoc.com
  • 20 MIO. Keeler.co.uk. [Internet]. [cited 2022 Apr 3]. Available from: https://www.keeler.co.uk/mio.html
  • 21 Russo A, Morescalchi F, Costagliola C, Delcassi L, Semeraro F. A Novel Device to Exploit the Smartphone Camera for Fundus Photography. J Ophthalmol 2015; 2015: 823139
  • 22 RESOLUÇÃO-RE n° 734. , DE 21 DE MARÇO DE 2019 - DOU - Imprensa Nacional [Internet]. [cited 2022 Apr 3 ]. Available from: https://www.in.gov.br/web/dou/-/resolucao-re-n-734-de-21-de-marco-de-2019-68412374
  • 23 Marques G. . Eyer é aprovado pela Anvisa [Internet]. PHELCOM Technologies. 2019 [cited 2022 Apr 3]. Available from: https://phelcom.com/pt-br/empresa/eyer-e-aprovado-pela-anvisa/
  • 24 Kohler J, Tran TM, Sun S, Montezuma SR. Teaching Smartphone Funduscopy with 20 Diopter Lens in Undergraduate Medical Education. Clin Ophthalmol 2021; 15: 2013-2023
  • 25 Wu AR, Fouzdar-Jain S, Suh DW. Comparison Study of Funduscopic Examination Using a Smartphone-Based Digital Ophthalmoscope and the Direct Ophthalmoscope. J Pediatr Ophthalmol Strabismus 2018; 55 (03) 201-206