CC BY 4.0 · Arq Neuropsiquiatr 2023; 81(06): 551-563
DOI: 10.1055/s-0043-1764411
View and Review

The use of noninvasive measurements of intracranial pressure in patients with traumatic brain injury: a narrative review

Avaliação não invasiva da pressão intracraniana em pacientes com traumatismo cranioencefálico: uma revisão narrativa
1   Universidade Federal de Minas Gerais, Faculdade de Medicina, Belo Horizonte MG, Brazil.
,
1   Universidade Federal de Minas Gerais, Faculdade de Medicina, Belo Horizonte MG, Brazil.
,
1   Universidade Federal de Minas Gerais, Faculdade de Medicina, Belo Horizonte MG, Brazil.
,
2   Faculdade de Ciências Médicas de Minas Gerais, Belo Horizonte MG, Brazil.
,
1   Universidade Federal de Minas Gerais, Faculdade de Medicina, Belo Horizonte MG, Brazil.
,
1   Universidade Federal de Minas Gerais, Faculdade de Medicina, Belo Horizonte MG, Brazil.
,
1   Universidade Federal de Minas Gerais, Faculdade de Medicina, Belo Horizonte MG, Brazil.
2   Faculdade de Ciências Médicas de Minas Gerais, Belo Horizonte MG, Brazil.
3   Hospital João XXIII, Belo Horizonte MG, Brazil.
› Author Affiliations

Abstract

Background The most frequent cause of death in neurosurgical patients is due to the increase in intracranial pressure (ICP); consequently, adequate monitoring of this parameter is extremely important.

Objectives In this study, we aimed to analyze the accuracy of noninvasive measurement methods for intracranial hypertension (IH) in patients with traumatic brain injury (TBI).

Methods The data were obtained from the PubMed database, using the following terms: intracranial pressure, noninvasive, monitoring, assessment, and measurement. The selected articles date from 1980 to 2021, all of which were observational studies or clinical trials, in English and specifying ICP measurement in TBI. At the end of the selection, 21 articles were included in this review.

Results The optic nerve sheath diameter (ONSD), pupillometry, transcranial doppler (TCD), multimodal combination, brain compliance using ICP waveform (ICPW), HeadSense, and Visual flash evoked pressure (FVEP) were analyzed. Pupillometry was not found to correlate with ICP, while HeadSense monitor and the FVEP method appear to have good correlation, but sensitivity and specificity data are not available. The ONSD and TCD methods showed good-to-moderate accuracy on invasive ICP values and potential to detect IH in most studies. Furthermore, multimodal combination may reduce the error possibility related to each technique. Finally, ICPW showed good accuracy to ICP values, but this analysis included TBI and non-TBI patients in the same sample.

Conclusions Noninvasive ICP monitoring methods may be used in the near future to guide TBI patients' management.

Resumo

Antecedentes A causa mais frequente de morte em pacientes neurocirúrgicos é devido ao aumento da pressão intracraniana (PIC); consequentemente, o monitoramento adequado desse parâmetro é de extrema importância.

Objetivos Avaliar na literatura científica os principais métodos não invasivos de medida da PIC em pacientes com traumatismo cranioencefálico (TCE).

Métodos Os dados foram obtidos na base de dados PubMed, utilizando os seguintes termos: pressão intracraniana, não invasivo, monitoramento, avaliação e medida, resultando em 147 artigos. Os artigos selecionados datam de 1980 a 2021, sendo todos estudos observacionais ou ensaios clínicos, em inglês e especificando a medida da pressão intracraniana em traumatismo cranioencefálico. Ao final da seleção, 21 artigos foram incluídos nesta revisão.

Resultados Foram analisados os seguintes métodos: diâmetro da bainha do nervo óptico (ONSD), pupilometria, doppler transcraniano (TCD), combinação multimodal, complacência cerebral por meio da análise de ondas intracerebrais (ICPW), HeadSense e visual evocado por flashes de luz (FVEP). A pupilometria não se correlacionou com os valores de PIC, enquanto que o monitor HeadSense e o método FVEP parecem ter uma boa correlação, mas os dados de sensibilidade e especificidade desses métodos não estão disponíveis. Os métodos ONSD e TCD mostraram acurácia de boa a moderada quanto aos valores de IPCi, além de bom potencial para detectar hipertensão intracraniana. Ademais, a combinação multimodal pode reduzir a possibilidade de erro relacionado a cada técnica. Por fim, o ICPW apresentou boa acurácia quanto aos valores de ICPi, mas, no estudo analisado, foram incluídos pacientes com e sem TCE em uma mesma amostra.

Conclusões Métodos não invasivos de medição da PIC podem atuar no futuro no manejo de pacientes com TCE como uma potencial ferramenta de triagem para TCE grave e para a detecção de hipertensão intracraniana.

Authors' Contributions

BCDF: is the main author and she reviewed the literature, did selection of articles and data extraction, evaluated the quality of selected articles and wrote the first draft and the final version of manuscript; LGGS: did literature revision, selection of articles and data extraction, evaluated the quality of selected articles and wrote the first draft; AVRQ, FADL, HLLLO, TYK: contributed equally with the manuscript by helping to review and select papers, and writing parts of the manuscript; RMF: reviewed the manuscript and approved its final version.




Publication History

Received: 26 July 2022

Accepted: 23 October 2022

Article published online:
28 June 2023

© 2023. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution 4.0 International License, permitting copying and reproduction so long as the original work is given appropriate credit (https://creativecommons.org/licenses/by/4.0/)

Thieme Revinter Publicações Ltda.
Rua do Matoso 170, Rio de Janeiro, RJ, CEP 20270-135, Brazil

 
  • References

  • 1 Raffiz M, Abdullah JM. Optic nerve sheath diameter measurement: a means of detecting raised ICP in adult traumatic and non-traumatic neurosurgical patients. Am J Emerg Med 2017; 35 (01) 150-153
  • 2 Singer KE, Wallen TE, Jalbert T. et al. Efficacy of Noninvasive Technologies in Triaging Traumatic Brain Injury and Correlating With Intracranial Pressure: A Prospective Study. J Surg Res 2021; 262: 27-37
  • 3 Ragauskas A, Daubaris G, Dziugys A, Azelis V, Gedrimas V. Innovative non-invasive method for absolute intracranial pressure measurement without calibration. Acta Neurochir Suppl (Wien) 2005; 95: 357-361
  • 4 Rajajee V, Vanaman M, Fletcher JJ, Jacobs TL. Optic nerve ultrasound for the detection of raised intracranial pressure. Neurocrit Care 2011; 15 (03) 506-515
  • 5 Rasulo FA, Bertuetti R, Robba C. et al. The accuracy of transcranial Doppler in excluding intracranial hypertension following acute brain injury: a multicenter prospective pilot study. Crit Care 2017; 21 (01) 44
  • 6 Robba C, Cardim D, Tajsic T. et al. Ultrasound non-invasive measurement of intracranial pressure in neurointensive care: A prospective observational study. PLoS Med 2017; 14 (07) e1002356
  • 7 Schmidt B, Bocklisch SF, Pässler M, Czosnyka M, Schwarze JJ, Klingelhöfer J. Fuzzy pattern classification of hemodynamic data can be used to determine noninvasive intracranial pressure. Acta Neurochir Suppl (Wien) 2005; 95: 345-349
  • 8 Schmidt B, Czosnyka M, Raabe A. et al. Adaptive noninvasive assessment of intracranial pressure and cerebral autoregulation. Stroke 2003; 34 (01) 84-89
  • 9 Soldatos T, Karakitsos D, Chatzimichail K, Papathanasiou M, Gouliamos A, Karabinis A. Optic nerve sonography in the diagnostic evaluation of adult brain injury. Crit Care 2008; 12 (03) R67
  • 10 Stevens AR, Su Z, Toman E, Belli A, Davies D. Optical pupillometry in traumatic brain injury: neurological pupil index and its relationship with intracranial pressure through significant event analysis. Brain Inj 2019; 33 (08) 1032-1038
  • 11 Zhao YL, Zhou JY, Zhu GH. Clinical experience with the noninvasive ICP monitoring system. Acta Neurochir Suppl (Wien) 2005; 95: 351-355
  • 12 Maissan IM, Dirven PJ, Haitsma IK, Hoeks SE, Gommers D, Stolker RJ. Ultrasonographic measured optic nerve sheath diameter as an accurate and quick monitor for changes in intracranial pressure. J Neurosurg 2015; 123 (03) 743-747
  • 13 Strumwasser A, Kwan RO, Yeung L. et al. Sonographic optic nerve sheath diameter as an estimate of intracranial pressure in adult trauma. J Surg Res 2011; 170 (02) 265-271
  • 14 Robba C, Pozzebon S, Moro B, Vincent JL, Creteur J, Taccone FS. Multimodal non-invasive assessment of intracranial hypertension: an observational study. Crit Care 2020; 24 (01) 379
  • 15 Moraes FM, Silva GS. Noninvasive intracranial pressure monitoring methods: a critical review. Arq Neuropsiquiatr 2021; 79 (05) 437-446 [Accessed 20 September 2022], pp. 437–446. Wu J, He W, Chen W, Zhu L. Research on simulation and experiment of noninvasive intracranial pressure monitoring based on acoustoelasticity effects. Med Devices (Auckl). 2013;6:123–131
  • 16 Cardim D, Robba C, Czosnyka M. et al. Noninvasive Intracranial Pressure Estimation With Transcranial Doppler: A Prospective Observational Study. J Neurosurg Anesthesiol 2020; 32 (04) 349-353
  • 17 Cardim D, Robba C, Donnelly J. et al. Prospective Study on Noninvasive Assessment of Intracranial Pressure in Traumatic Brain-Injured Patients: Comparison of Four Methods. J Neurotrauma 2016; 33 (08) 792-802
  • 18 Czosnyka M, Matta BF, Smielewski P, Kirkpatrick PJ, Pickard JD. Cerebral perfusion pressure in head-injured patients: a noninvasive assessment using transcranial Doppler ultrasonography. J Neurosurg 1998; 88 (05) 802-808
  • 19 Mursch K, Vogelsang JP, Zimmerer B, Ludwig HC, Behnke J, Markakis E. Bedside measurement of the third ventricle's diameter during episodes of arising intracranial pressure after head trauma. Using transcranial real-time sonography for a non-invasive examination of intracranial compensation mechanisms. Acta Neurochir (Wien) 1995; 137 1-2, discussion 23–24 19-23
  • 20 Klingelhöfer J, Conrad B, Benecke R, Sander D. Intracranial flow patterns at increasing intracranial pressure. Klin Wochenschr 1987; 65 (12) 542-545
  • 21 Herklots MW, Moudrous W, Oldenbeuving A. et al. Prospective Evaluation of Noninvasive HeadSense Intracranial Pressure Monitor in Traumatic Brain Injury Patients Undergoing Invasive Intracranial Pressure Monitoring. World Neurosurg 2017; 106: 557-562
  • 22 Nucci CG, De Bonis P, Mangiola A. et al. Intracranial pressure wave morphological classification: automated analysis and clinical validation. Acta Neurochir (Wien) 2016; 158 (03) 581-588 , discussion 588
  • 23 Mascarenhas S, Vilela GH, Carlotti C. et al. The new ICP minimally invasive method shows that the Monro-Kellie doctrine is not valid. Acta Neurochir Suppl (Wien) 2012; 114: 117-120
  • 24 Cabella B, Vilela GH, Mascarenhas S. et al. Validation of a New Noninvasive Intracranial Pressure Monitoring Method by Direct Comparison with an Invasive Technique. Acta Neurochir Suppl (Wien) 2016; 122: 93-96
  • 25 Frigieri G, Andrade RAP, Wang CC. et al. Analysis of a Minimally Invasive Intracranial Pressure Signals During Infusion at the Subarachnoid Spinal Space of Pigs. Acta Neurochir Suppl (Wien) 2018; 126: 75-77
  • 26 Brasil S, Solla DJF, Nogueira RC, Teixeira MJ, Malbouisson LMS, Paiva WDS. A Novel Noninvasive Technique for Intracranial Pressure Waveform Monitoring in Critical Care. J Pers Med 2021; 11 (12) 1302
  • 27 Wu J, He W, Chen WM, Zhu L. Research on simulation and experiment of noninvasive intracranial pressure monitoring based on acoustoelasticity effects. Med Devices (Auckl) 2013; 6: 123-131