Semin Respir Crit Care Med 2023; 44(03): 349-361
DOI: 10.1055/s-0043-1766119
Review Article

Physiology and Biomarkers for Surveillance of Occupational Lung Disease

Deborah H. Yates
1   Department of Thoracic Medicine, St. Vincent's Hospital, Darlinghurst, NSW, Australia
› Author Affiliations

Abstract

Respiratory surveillance is the process whereby a group of exposed workers are regularly tested (or screened) for those lung diseases which occur as a result of a specific work exposure. Surveillance is performed by assessing various measures of biological or pathological processes (or biomarkers) for change over time. These traditionally include questionnaires, lung physiological assessments (especially spirometry), and imaging. Early detection of pathological processes or disease can enable removal of a worker from a potentially harmful exposure at an early stage. In this article, we summarize the physiological biomarkers currently used for respiratory surveillance, while commenting on differences in interpretative strategies between different professional groups. We also briefly review the many new techniques which are currently being assessed for respiratory surveillance in prospective research studies and which are likely to significantly broaden and enhance this field in the near future.



Publication History

Article published online:
18 April 2023

© 2023. Thieme. All rights reserved.

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 Cohen RA, Go LHT. Artificial stone silicosis: removal from exposure is not enough. Chest 2020; 158 (03) 862-863
  • 2 Cohen RA, Patel A, Green FH. Lung disease caused by exposure to coal mine and silica dust. Semin Respir Crit Care Med 2008; 29 (06) 651-661
  • 3 Bodduluri S, Reinhardt JM, Hoffman EA, Newell Jr JD, Bhatt SP. Recent advances in computed tomography imaging in chronic obstructive pulmonary disease. Ann Am Thorac Soc 2018; 15 (03) 281-289
  • 4 Fletcher C, Peto R. The natural history of chronic airflow obstruction. BMJ 1977; 1 (6077): 1645-1648
  • 5 Agusti A, Faner R. Lung function trajectories in health and disease. Lancet Respir Med 2019; 7 (04) 358-364
  • 6 Perrett J, Miles S, Brims F. Newbegin K and members of the Thoracic Society of Australia and New Zealand (TSANZ) Occupational & Environmental Special Interest Group. Respiratory surveillance for coal mine dust and artificial stone-exposed workers. TSANZ position paper. Respirology 2020; 25: 1193-1202
  • 7 Wood C, Yates D. Respiratory surveillance in mineral dust-exposed workers. Breathe (Sheff) 2020; 16 (01) 190632
  • 8 Sim M, Thompson B, Cohen RA. et al. Review of respiratory component of the coal mine workers' health scheme for the Queensland Department of Natural Resources and Mines. Accessed January 1, 2023 at: https://www.resources.qld.gov.au/__data/assets/pdf_file/0009/383940/monash-qcwp-final-report-2016.pdf
  • 9 Hoy RF. Artificial stone silicosis. Curr Opin Allergy Clin Immunol 2021; 21 (02) 114-120
  • 10 Department of Health & Aged Care. . National Dust Disease Taskforce. Accessed January 1, 2023 at: https://www.health.gov.au/committees-and-groups/national-dust-disease-taskforce
  • 11 Resources Safety & Health Queensland. Accessed January 11, 2023 at: https://www.rshq.qld.gov.au/miners-health-matters/home
  • 12 FDA-NIH Biomarker Working Group. . BEST (Biomarkers, EndpointS, and other Tools) Resource [Internet]. Silver Spring, MD: Food and Drug Administration (US); 2016 ;Co-published by Bethesda, MD: National Institutes of Health (US)
  • 13 Denison DM. . Physiological principles: thinking about the lung. In: Occupational Lung Disorders. Parkes WR, ed. Oxford: Butterworth & Heinemann Ltd 1994:34
  • 14 McGuire C. ‘X-rays don’t tell lies': the Medical Research Council and the measurement of respiratory disability, 1936-1945. Br J Hist Sci 2019; 52 (03) 447-465
  • 15 Townsend MC. Spirometry in Occupational Health-2020. J Occup Environ Med 2020; 62 (05) e208-e230
  • 16 Redlich CA, Tarlo SM, Hankinson JL. et al; American Thoracic Society Committee on Spirometry in the Occupational Setting. Official American Thoracic Society technical standards: spirometry in the occupational setting. Am J Respir Crit Care Med 2014; 189 (08) 983-993
  • 17 Townsend MC. ACOEM position statement. Spirometry in the occupational setting. American College of Occupational and Environmental Medicine. J Occup Environ Med 2000; 42 (03) 228-245
  • 18 Spirometry Testing in Occupational Health Programs: Best Practices for Healthcare Professionals. Occupational Safety and Health Administration, OSHA 3637–2013. . Accessed February 22, 2020 at: http://www.osha.gov/Publications/OSHA3637.pdf
  • 19 Cotes JE. The Medical Research Council Pneumoconiosis Research Unit, 1945-1985: a short history and tribute. Occup Med (Lond) 2000; 50 (06) 440-449
  • 20 Pellegrino R, Viegi G, Brusasco V. et al. ATS/ERS Task Force: Standardisation of Lung Function Testing - Interpretative Strategies for Lung Function Tests. Eur Respir J 2005; 26: 948-968
  • 21 Graham B, Steenbruggen I, Miller M. et al. Standardization of Spirometry 2019 Update. An Official American Thoracic Society and European Respiratory Society Technical Statement. Am J Respir Crit Care Med 2019; 200 (08) e70-e88
  • 22 Stanojevic S, Kaminsky DA, Miller MR. et al. ERS/ATS technical standard on interpretive strategies for routine lung function tests. Eur Respir J 2022; 60 (01) 2101499
  • 23 Coal workers' Health Survelilance program.. Accessed January 31, 2023 at: https://www.cdc.gov/niosh/topics/cwhsp/default.htm
  • 24 Mobile health unit to detect mine dust lung diseases.. Feb 4th, 2022. Accessed January 21, 2023 at: https://safetowork.com.au/mobile-health-unit-to-detect-mine-dust-lung-diseases
  • 25 Matheson MC, Abramson MJ, Allen K. et al; TAHS investigator group. Cohort profile: the Tasmanian Longitudinal Health STUDY (TAHS). Int J Epidemiol 2017; 46 (02) 407-408i
  • 26 The National Health and Nutrition Examination Survey (NHANES). . Accessed March 9, 2023 at: https://www.cdc.gov/nchs/nhanes/about_nhanes.htm
  • 27 Andersson C, Johnson AD, Benjamin EJ, Levy D, Vasan RS. 70-year legacy of the Framingham Heart Study. Nat Rev Cardiol 2019; 16 (11) 687-698
  • 28 Burney PG, Luczynska C, Chinn S, Jarvis D. The European Community Respiratory Health Survey. Eur Respir J 1994; 7 (05) 954-960
  • 29 Murray CJL. The global burden of disease study at 30 years. Nat Med 2022; 28 (10) 2019-2026
  • 30 The Multi-Ethnic Study of Atherosclerosis (MESA). . Accessed February 28, 2023 at: https://www.mesa-nhlbi.org/
  • 31 Couper D, LaVange LM, Han M. et al; SPIROMICS Research Group. Design of the Subpopulations and Intermediate Outcomes in COPD Study (SPIROMICS). Thorax 2014; 69 (05) 491-494
  • 32 Boutou AK, Shrikrishna D, Tanner RJ. et al. Lung function indices for predicting mortality in COPD. Eur Respir J 2013; 42 (03) 616-625
  • 33 Bikov A, Lange P, Anderson JA. et al. FEV1 is a stronger mortality predictor than FVC in patients with moderate COPD and with an increased risk for cardiovascular disease. Int J Chron Obstruct Pulmon Dis 2020; 15: 1135-1142
  • 34 Quanjer PH, Stanojevic S, Cole TJ. et al; ERS Global Lung Function Initiative. Multi-ethnic reference values for spirometry for the 3-95-yr age range: the global lung function 2012 equations. Eur Respir J 2012; 40 (06) 1324-1343
  • 35 Hankinson JL, Odencrantz JR, Fedan KB. Spirometric reference values from a sample of the general U.S. population. Am J Respir Crit Care Med 1999; 159 (01) 179-187
  • 36 Global strategy for prevention, diagnosis and management of COPD: 2023 Report. Accessed January 22, 2023 at: www.goldcopd.org/2023-gold-report-2/
  • 37 Global Initiative for Asthma. . Global strategy for asthma management and prevention. Fontana, Global Initiative for Asthma, 2022. Accessed January 20, 2023 at: www.ginasthma.org/reports
  • 38 Reddel HK, Bacharier LB, Bateman ED. et al. Global Initiative for Asthma Strategy 2021: executive summary and rationale for key changes. Eur Respir J 2021; 59 (01) 2102730
  • 39 Raghu G, Remy-Jardin M, Richeldi L. et al. Idiopathic pulmonary fibrosis (an update) and progressive pulmonary fibrosis in adults: an official ATS/ERS/JRS/ALAT Clinical Practice Guideline. Am J Respir Crit Care Med 2022; 205 (09) e18-e47
  • 40 Baughman RP, Valeyre D, Korsten P. et al. ERS clinical practice guidelines on treatment of sarcoidosis. Eur Respir J 2021; 58 (06) 2004079
  • 41 Hoy R, Burdon J, Chen L. et al. Work-related asthma: a position paper from the Thoracic Society of Australia and New Zealand and the National Asthma Council Australia. Respirology 2020; 25 (11) 1183-1192
  • 42 Miller MR, Quanjer PH, Swanney MP, Ruppel G, Enright PL. Interpreting lung function data using 80% predicted and fixed thresholds misclassifies more than 20% of patients. Chest 2011; 139 (01) 52-59
  • 43 Miller MR, Pedersen OF. New concepts for expressing forced expiratory volume in 1  s arising from survival analysis. Eur Respir J 2010; 35 (04) 873-882
  • 44 Redlich CA, Tarlo SM. Longitudinal assessment of lung function decline in the occupational setting. Curr Opin Allergy Clin Immunol 2015; 15 (02) 145-149
  • 45 Lytras T, Beckmeyer-Borowko A, Kogevinas M. et al. Cumulative occupational exposures and lung-function decline in two large general-population cohorts. Ann Am Thorac Soc 2021; 18 (02) 238-246
  • 46 Tafuro F, Corradi M. An approach to interpreting restrictive spirometric pattern results in occupational settings. Med Lav 2016; 107 (06) 419-436
  • 47 De Matteis S, Iridoy-Zulet AA, Aaron S, Swann A, Cullinan P. A new spirometry-based algorithm to predict occupational pulmonary restrictive impairment. Occup Med (Lond) 2016; 66 (01) 50-53
  • 48 Myrberg T, Lindberg A, Eriksson B. et al. Restrictive spirometry versus restrictive lung function using the GLI reference values. Clin Physiol Funct Imaging 2022; 42 (03) 181-189
  • 49 Ley B, Ryerson CJ, Vittinghoff E. et al. A multidimensional index and staging system for idiopathic pulmonary fibrosis. Ann Intern Med 2012; 156 (10) 684-691
  • 50 Graham BL, Brusasco V, Burgos F. et al. 2017 ERS/ATS standards for single-breath carbon monoxide uptake in the lung. Eur Respir J 2017; 49 (01) 1600016
  • 51 Nambiar S, Bong How S, Gummer J, Trengove R, Moodley Y. Metabolomics in chronic lung diseases. Respirology 2020; 25 (02) 139-148
  • 52 Ibrahim W, Carr L, Cordell R. et al. Breathomics for the clinician: the use of volatile organic compounds in respiratory diseases. Thorax 2021; 76 (05) 514-521
  • 53 Dweik RA, Boggs PB, Erzurum SC. et al; American Thoracic Society Committee on Interpretation of Exhaled Nitric Oxide Levels (FENO) for Clinical Applications. An official ATS clinical practice guideline: interpretation of exhaled nitric oxide levels (FENO) for clinical applications. Am J Respir Crit Care Med 2011; 184 (05) 602-615
  • 54 Kharitonov SA, Yates D, Robbins RA, Logan-Sinclair R, Shinebourne EA, Barnes PJ. Increased nitric oxide in exhaled air of asthmatic patients. Lancet 1994; 343 (8890): 133-135
  • 55 Lundberg JO, Weitzberg E, Lundberg JM, Alving K. Nitric oxide in exhaled air. Eur Respir J 1996; 9 (12) 2671-2680
  • 56 Loewenthal L, Menzies-Gow A. FeNO in asthma. Semin Respir Crit Care Med 2022; 43 (05) 635-645
  • 57 Sandrini A, Taylor DR, Thomas PS, Yates DH. Fractional exhaled nitric oxide in asthma: an update. Respirology 2010; 15 (01) 57-70
  • 58 Yates DH, Kharitonov SA, Robbins RA, Thomas PS, Barnes PJ. Effect of a nitric oxide synthase inhibitor and a glucocorticosteroid on exhaled nitric oxide. Am J Respir Crit Care Med 1995; 152 (03) 892-896
  • 59 Bjermer L, Alving K, Diamant Z. et al. Current evidence and future research needs for FeNO measurement in respiratory diseases. Respir Med 2014; 108 (06) 830-841
  • 60 Holguin F, Cardet JC, Chung KF. et al. Management of severe asthma: a European Respiratory Society/American Thoracic Society guideline. Eur Respir J 2020; 55 (01) 1900588
  • 61 European Respiratory Society (ERS). . Accessed January 31, 2023 at: http://www.lungfunction.org/
  • 62 See KC, Christiani DC. Normal values and thresholds for the clinical interpretation of exhaled nitric oxide levels in the US general population: results from the National Health and Nutrition Examination Survey 2007-2010. Chest 2013; 143 (01) 107-116
  • 63 Rupani H, Kent BD. Using fractional exhaled nitric oxide measurement in clinical asthma management. Chest 2022; 161 (04) 906-917
  • 64 Kharitonov SA, Yates D, Barnes PJ. Increased nitric oxide in exhaled air of normal human subjects with upper respiratory tract infections. Eur Respir J 1995; 8 (02) 295-297
  • 65 Lior Y, Yatzkan N, Brami I. et al. Fractional exhaled Nitric Oxide (FeNO) level as a predictor of COVID-19 disease severity. Nitric Oxide 2022; 124: 68-73
  • 66 Heaney LG, Busby J, Hanratty CE. et al; investigators for the MRC Refractory Asthma Stratification Programme. Composite type-2 biomarker strategy versus a symptom-risk-based algorithm to adjust corticosteroid dose in patients with severe asthma: a multicentre, single-blind, parallel group, randomised controlled trial. Lancet Respir Med 2021; 9 (01) 57-68
  • 67 Cameli P, Bargagli E, Bergantini L. et al. Extended exhaled nitric oxide analysis in interstitial lung diseases: a systematic review. Int J Mol Sci 2020; 21 (17) 6187
  • 68 Dressel H, Gross C, de la Motte D, Sültz J, Jörres RA, Nowak D. Educational intervention in farmers with occupational asthma: long-term effect on exhaled nitric oxide. J Investig Allergol Clin Immunol 2009; 19 (01) 49-53
  • 69 Oƫelea MR, Fell AKM, Handra CM. et al. The value of fractional exhaled nitric oxide in occupational diseases - a systematic review. J Occup Med Toxicol 2022; 17 (01) 14
  • 70 Annangi S, Nutalapati S, Sturgill J, Flenaugh E, Foreman M. Eosinophilia and fractional exhaled nitric oxide levels in chronic obstructive lung disease. Thorax 2022; 77 (04) 351-356
  • 71 Horváth I, Barnes PJ, Loukides S. et al. A European Respiratory Society technical standard: exhaled biomarkers in lung disease. Eur Respir J 2017; 49 (04) 1600965
  • 72 Ojanguren I, Cruz MJ, Villar A, Barrecheguren M, Morell F, Muñoz X. Utility of exhaled nitric oxide fraction for the diagnosis of hypersensitivity pneumonitis. Lung 2016; 194 (01) 75-80
  • 73 Shirai T, Ikeda M, Morita S, Asada K, Suda T, Chida K. Elevated alveolar nitric oxide concentration after environmental challenge in hypersensitivity pneumonitis. Respirology 2010; 15 (04) 721-722
  • 74 Sandrini A, Johnson AR, Thomas PS, Yates DH. Fractional exhaled nitric oxide concentration is increased in asbestosis and pleural plaques. Respirology 2006; 11 (03) 325-329
  • 75 Lee JE, Rhee CK, Lim JH. et al. Fraction of exhaled nitric oxide in patients with acute eosinophilic pneumonia. Chest 2012; 141 (05) 1267-1272
  • 76 Ohtsuka Y, Monioka T, Nakano I. et al. Exhaled nitric oxude (FeNO) in complicated form of pneumoconiosis pateints. Am J Respir Crit Care Med 2009; 179: A5898
  • 77 Tungu AM, Bråtveit M, Mamuya SD, Moen BE. Fractional exhaled nitric oxide among cement factory workers: a cross sectional study. Occup Environ Med 2013; 70 (05) 289-295
  • 78 Mamuya S, Sakwari G, Ngowi V, Moen B, Bråtveit M. Dust exposure, fractional exhaled nitric oxide and respiratory symptoms among volcanic rock miners in Kilimanjaro, Tanzania. Ann Glob Health 2018; 84 (03) 380-386
  • 79 Tiev KP, Hua-Huy T, Kettaneh A. et al. Alveolar concentration of nitric oxide predicts pulmonary function deterioration in scleroderma. Thorax 2012; 67 (02) 157-163
  • 80 Yates DH, Miles SE. Silica and connective tissue disorders: the important role of the dermatologist. J Dermatol Skin Sci 2022; 4 (02) 10-19
  • 81 Lee JS, Shin JH, Lee JO, Lee KM, Kim JH, Choi BS. Levels of exhaled breath condensate pH and fractional exhaled nitric oxide in retired coal miners. Toxicol Res 2010; 26 (04) 329-337
  • 82 Coronel Teixeira R, IJdema D, Gómez C. et al. The electronic nose as a rule-out test for tuberculosis in an indigenous population. J Intern Med 2021; 290 (02) 386-391
  • 83 Fend R, Geddes R, Lesellier S. et al. Use of an electronic nose to diagnose Mycobacterium bovis infection in badgers and cattle. J Clin Microbiol 2005; 43 (04) 1745-1751
  • 84 Keogh RJ, Riches JC. The use of breath analysis in the management of lung cancer: is it ready for primetime?. Curr Oncol 2022; 29 (10) 7355-7378
  • 85 Svedahl SR, Svendsen K, Tufvesson E. et al. Inflammatory markers in blood and exhaled air after short-term exposure to cooking fumes. Ann Occup Hyg 2013; 57 (02) 230-239
  • 86 Geer Wallace MA, Pleil JD, Oliver KD. et al. Non-targeted GC/MS analysis of exhaled breath samples: exploring human biomarkers of exogenous exposure and endogenous response from professional firefighting activity. J Toxicol Environ Health A 2019; 82 (04) 244-260
  • 87 Catino A, de Gennaro G, Di Gilio A. et al. Breath analysis: a systematic review of volatile organic compounds (VOCs) in diagnostic and therapeutic management of pleural mesothelioma. Cancers (Basel) 2019; 11 (06) 831
  • 88 Töreyin ZN, Ghosh M, Göksel Ö, Göksel T, Godderis L. Exhaled breath analysis in diagnosis of malignant pleural mesothelioma: systematic review. Int J Environ Res Public Health 2020; 17 (03) 1110
  • 89 van der Sar IG, Wijbenga N, Nakshbandi G. et al. The smell of lung disease: a review of the current status of electronic nose technology. Respir Res 2021; 22 (01) 246
  • 90 Wilson AD. Applications of electronic-nose technologies for noninvasive early detection of plant, animal and human diseases. Chemosensors (Basel) 2018; 6: 45
  • 91 Jalali M, Zare Sakhvidi MJ, Bahrami A, Berijani N, Mahjub H. Oxidative stress biomarkers in exhaled breath of workers exposed to crystalline silica dust by SPME-GC-MS. J Res Health Sci 2016; 16 (03) 153-161
  • 92 Kaloumenou M, Skotadis E, Lagopati N, Efstathopoulos E, Tsoukalas D. Breath analysis: a promising tool for disease diagnosis-the role of sensors. Sensors (Basel) 2022; 22 (03) 1238
  • 93 Corradi M, Mutti A. Exhaled breath analysis: from occupational to respiratory medicine. Acta Biomed 2005; 76 (suppl 2): 20-29
  • 94 Riccelli MG, Goldoni M, Poli D, Mozzoni P, Cavallo D, Corradi M. Welding fumes, a risk factor for lung diseases. Int J Environ Res Public Health 2020; 17 (07) 2552
  • 95 Corradi M, Folesani G, Robuschi B. et al. Non-invasive techniques to assess restrictive lung disease in workers exposed to free crystalline silica. Med Lav 2019; 110 (02) 83-92
  • 96 Wu CM, Adetona A, Song CC, Naeher L, Adetona O. Measuring acute pulmonary responses to occupational wildland fire smoke exposure using exhaled breath condensate. Arch Environ Occup Health 2020; 75 (02) 65-69
  • 97 Pelclova D, Zdimal V, Komarc M. et al. Three-year study of markers of oxidative stress in exhaled breath condensate in workers producing nanocomposites, extended by plasma and urine analysis in last two years. Nanomaterials (Basel) 2020; 10 (12) 2440
  • 98 Shoman Y, Wild P, Hemmendinger M. et al. Reference ranges of 8-isoprostane concentrations in exhaled breath condensate (EBC): a systematic review and meta-analysis. Int J Mol Sci 2020; 21 (11) 3822
  • 99 Turcu V, Wild P, Hemmendinger M. et al. Towards reference values for malondialdehyde on exhaled breath condensate: a systematic literature review and meta-analysis. Toxics 2022; 10 (05) 258
  • 100 Lawal O, Ahmed WM, Nijsen TME, Goodacre R, Fowler SJ. Exhaled breath analysis: a review of ‘breath-taking’ methods for off-line analysis. Metabolomics 2017; 13 (10) 110
  • 101 Ghosh N, Choudhury P, Joshi M. et al. Global metabolome profiling of exhaled breath condensates in male smokers with asthma COPD overlap and prediction of the disease. Sci Rep 2021; 11 (01) 16664
  • 102 Pronk A, Loh M, Kuijpers E. et al; EPHOR Consortium. Applying the exposome concept to working life health: the EU EPHOR project. Environ Epidemiol 2022; 6 (02) e185
  • 103 García-Núñez A, Jiménez-Gómez G, Hidalgo-Molina A, Córdoba-Doña JA, León-Jiménez A, Campos-Caro A. Inflammatory indices obtained from routine blood tests show an inflammatory state associated with disease progression in engineered stone silicosis patients. Sci Rep 2022; 12 (01) 8211
  • 104 Campos-Caro A, Jiménez-Gómez G, García-Núñez A, Hidalgo-Molina A, León-Jiménez A. Plasma cytokine profiling reveals differences between silicotic patients with simple silicosis and those with progressive massive fibrosis caused by engineered stone. Int J Mol Sci 2023; 24 (02) 1541