Diabetologie und Stoffwechsel 2023; 18(S 01): S9-S10
DOI: 10.1055/s-0043-1767850
Abstracts | DK 2023
Freie Vorträge
Beta is better

Pancreatic islet protection at the expense of secretory function associates with serine-linked one-carbon metabolism

Authors

  • Angela Pelligra

    1   Heinrich-Heine-Universität Düsseldorf, Deutsches Diabetes Zentrum Düsseldorf (DDZ), Deutsches Zentrum für Diabetes Forschung (DZD), Institut für Stoffwechselphysiologie, Düsseldorf, Germany
  • Jessica Mrugala

    1   Heinrich-Heine-Universität Düsseldorf, Deutsches Diabetes Zentrum Düsseldorf (DDZ), Deutsches Zentrum für Diabetes Forschung (DZD), Institut für Stoffwechselphysiologie, Düsseldorf, Germany
  • Kerstin Griess

    2   Heinrich-Heine-Universität Düsseldorf, Institut für Stoffwechselphysiologie, Düsseldorf, Germany
  • Oliver Nortmann

    2   Heinrich-Heine-Universität Düsseldorf, Institut für Stoffwechselphysiologie, Düsseldorf, Germany
  • Barbara Bartosinska

    2   Heinrich-Heine-Universität Düsseldorf, Institut für Stoffwechselphysiologie, Düsseldorf, Germany
  • Andrea Köster

    2   Heinrich-Heine-Universität Düsseldorf, Institut für Stoffwechselphysiologie, Düsseldorf, Germany
  • Natalia Krupenko

    3   University of North Carolina (UNC), Nutrition Research Institute, Chapel Hill, North Carolina, United States
  • Dominik Gebel

    2   Heinrich-Heine-Universität Düsseldorf, Institut für Stoffwechselphysiologie, Düsseldorf, Germany
  • Philipp Westhoff

    4   Heinrich-Heine-Universität Düsseldorf, Institut für Biochemie der Pflanzen, Düsseldorf, Germany
  • Bodo Steckel

    5   Heinrich-Heine-Universität Düsseldorf, Institut für Moleculare Kardiologie, Düsseldorf, Germany
  • Daniel Eberhard

    2   Heinrich-Heine-Universität Düsseldorf, Institut für Stoffwechselphysiologie, Düsseldorf, Germany
  • Bengt-Frederik Belgardt

    6   Deutsches Diabetes-Zentrum (DDZ), Leibniz-Zentrum für Diabetes-Forschung an der Heinrich-Heine-Universität Düsseldorf, Deutsches Zentrum für Diabetesforschung (DZD), Institut für Vaskular- und Inselzellbiologie, Düsseldorf, Germany
  • Jürgen Schrader

    5   Heinrich-Heine-Universität Düsseldorf, Institut für Moleculare Kardiologie, Düsseldorf, Germany
  • Andreas P.M. Weber

    4   Heinrich-Heine-Universität Düsseldorf, Institut für Biochemie der Pflanzen, Düsseldorf, Germany
  • Sergey A. Krupenko

    3   University of North Carolina (UNC), Nutrition Research Institute, Chapel Hill, North Carolina, United States
  • Eckhard Lammert

    1   Heinrich-Heine-Universität Düsseldorf, Deutsches Diabetes Zentrum Düsseldorf (DDZ), Deutsches Zentrum für Diabetes Forschung (DZD), Institut für Stoffwechselphysiologie, Düsseldorf, Germany
 

Type 2 diabetes (T2D) is the most common metabolic disease worldwide and is characterized by insulin hypersecretion, followed by reduced glucose-stimulated insulin secretion (GSIS). Even though much has been discovered about insulin producing beta cell physiology, the molecular mechanisms behind beta cell decay in T2D are still unknown and no anti-diabetic drug is available to fully halt or reverse this process. Here, we show that short-term in vitro stimulation of mouse pancreatic islets with insulin secretagogue dextrorphan (DXO) enhances GSIS, but does not protect islets from cell death. In contrast, long-term insulin hypersecretion induced by DXO reduces GSIS, but protects islets from cell death. Bulk RNA sequencing of islets reveals increased expression of genes encoding enzymes of the serine-linked mitochondrial one-carbon metabolism (OCM) after long-term, but not short-term stimulation. In long-term stimulated islets, more glucose was metabolized to serine than citrate, and mitochondrial concentrations of ATP decreased, despite unaltered oxygen consumption, while NAPDH increased. Activating transcription factor-4 (Atf4) is shown to be required and sufficient to activate serine-linked mitochondrial OCM genes in islets, and gain- and loss-of-function experiments revealed that Atf4 reduces GSIS and is necessary, but not solely sufficient for full DXO-mediated islet cell protection. Furthermore, we show that de novo serine synthesis enzyme phosphoglycerate dehydrogenase (Phgdh) and enzymes of the mitochondrial OCM, such as serine hydroxymethyltransferase 2 (Shmt2) and methylenetetrahydrofolate dehydrogenase 2 (Mthfd2), reduce GSIS and regulate islet cell death. In summation, we identified a reversible metabolic pathway associated with islet cell protection at expense of secretory function.



Publikationsverlauf

Artikel online veröffentlicht:
02. Mai 2023

© 2023. Thieme. All rights reserved.

Georg Thieme Verlag
Rüdigerstraße 14, 70469 Stuttgart, Germany