CC BY-NC-ND 4.0 · Rev Bras Ortop (Sao Paulo) 2023; 58(04): e604-e610
DOI: 10.1055/s-0043-1768620
Artigo Original
Joelho

Analysis of the Mechanical Behavior of Porcine Graft Fixation in a Polyurethane Block Using a 3D-printed PLA Interference Screw[*]

Article in several languages: português | English
1   Engenheiro, Departamento de Engenharia e Tecnologia, Universidade Federal Rural do Semiárido, Mossoró, RN, Brasil
,
1   Engenheiro, Departamento de Engenharia e Tecnologia, Universidade Federal Rural do Semiárido, Mossoró, RN, Brasil
,
2   Ortopedista e Traumatologista, Departamento de ortopedia e Traumatologia, Instituto de Ortopedia e Traumatologia do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brasil
,
1   Engenheiro, Departamento de Engenharia e Tecnologia, Universidade Federal Rural do Semiárido, Mossoró, RN, Brasil
,
3   Médico, Departamento de Ciências da Saúde, Universidade Federal Rural do Semiárido, Mossoró, RN, Brasil
,
3   Médico, Departamento de Ciências da Saúde, Universidade Federal Rural do Semiárido, Mossoró, RN, Brasil
› Author Affiliations

Abstract

Objective The interest in using 3D printing in the healthcare field has grown over the years, given its advantages and potential in the rapid manufacturing of personalized devices and implants with complex geometries. Thus, the aim of the present study was to compare the mechanical fixation behavior of a 3D-printed interference screw, produced by fused deposition modeling of polylactic acid (PLA) filament, with that of a titanium interference screw.

Methods Eight deep flexor porcine tendons, approximately 8 mm wide and 9 cm long, were used as graft and fixed to a 40 pounds-per-cubic-foot (PCF) polyurethane block at each of its extremities. One group was fixed only with titanium interference screws (group 1) and the other only with 3D-printed PLA screws (BR 20 2021 018283-6 U2) (group 2). The tests were conducted using an EMIC DL 10000 electromechanical universal testing machine in axial traction mode.

Results Group 1 (titanium) obtained peak force of 200 ± 7 N, with mean graft deformation of 8 ± 2 mm, and group 2 (PLA) obtained peak force of 300 ± 30 N, and mean graft deformation of 7 ± 3 mm. Both the titanium and PLA screws provided good graft fixation in the polyurethane block, with no slippage or apparent deformation. In all the samples, the test culminated in graft rupture, with around 20 mm of deformation in relation to the initial length.

Conclusion The 3D-printed PLA screw provided good fixation, similar to that of its titanium counterpart, producing satisfactory and promising results.

Financial Support

The present study received no financial support from any public, commercial, or not-for-profit sources.


* Trabalho desenvolvido na UFERSA - Universidade Federal Rural do Semi-Árido, Mossoró, RN, Brasil.




Publication History

Received: 24 July 2022

Accepted: 18 October 2022

Article published online:
30 August 2023

© 2023. Sociedade Brasileira de Ortopedia e Traumatologia. This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)

Thieme Revinter Publicações Ltda.
Rua do Matoso 170, Rio de Janeiro, RJ, CEP 20270-135, Brazil

 
  • Referências

  • 1 Danieli MV, Padovani CR. Comparação entre parafuso de interferência e transcondilar na reconstrução do LCA. Acta Ortop Bras 2011; 19 (06) 338-341
  • 2 Harilainen A, Linko E, Sandelin J. Randomized prospective study of ACL reconstruction with interference screw fixation in patellar tendon autografts versus femoral metal plate suspension and tibial post fixation in hamstring tendon autografts: 5-year clinical and radiological follow-up results. Knee Surg Sports Traumatol Arthrosc 2006; 14 (06) 517-528
  • 3 Lemos MJ, Albert J, Simon T, Jackson DW. Radiographic analysis of femoral interference screw placement during ACL reconstruction: endoscopic versus open technique. Arthroscopy 1993; 9 (02) 154-158
  • 4 Diego AL, Stemberg Martins V, Dias LJA. et al. Anatomic Outside-In Reconstruction of the Anterior Cruciate Ligament Using Femoral Fixation with Metallic Interference Screw and Surgical Staples (Agrafe) in the Tibia: An Effective Low-Cost Technique. Open Orthop J 2017; 11: 1154-1164
  • 5 Zeng C, Lei G, Gao S, Luo W. Methods and devices for graft fixation in anterior cruciate ligament reconstruction. Cochrane Database Syst Rev 2018; 2018 (06) CD010730
  • 6 Ejnisman L, Helito CP, Camargo AFF, Rocha BA, Baptista AM, Camargo OP. Three-dimensional printing in orthopedics: where we stand and where we are heading. Acta Ortop Bras 2021; 29 (04) 223-227
  • 7 Liu A, Xue GH, Sun M. et al. 3D Printing Surgical Implants at the clinic: A Experimental Study on Anterior Cruciate Ligament Reconstruction. Sci Rep 2016; 6: 21704
  • 8 Moré ADO, Pizzolatti ALA, Fancello EA, Salmoria GV, Roesler CRM. Graft tendon slippage with metallic and bioabsorbable interference screws under cyclic load: A biomechanical study in a porcine model. Rev Bras Eng Bioméd 2015; 31 (01) 56-61
  • 9 Scott WN, Insall JN. Surgery of the knee. New York, NY: Churchill Livingstone Elsevier; 2006
  • 10 Cerulli G, Placella G, Sebastiani E, Tei MM, Speziali A, Manfreda F. ACL Reconstruction: Choosing the Graft. Joints 2013; 1 (01) 18-24
  • 11 Dhammi IK, , Rehan-Ul-Haq, Kumar S. Graft choices for anterior cruciate ligament reconstruction. Indian J Orthop 2015; 49 (02) 127-128
  • 12 Dheerendra SK, Khan WS, Singhal R, Shivarathre DG, Pydisetty R, Johnstone D. Anterior cruciate ligament graft choices: a review of current concepts. Open Orthop J 2012; 6: 281-286
  • 13 Weiler A, Hoffmann RF, Stähelin AC, Bail HJ, Siepe CJ, Südkamp NP. Hamstring tendon fixation using interference screws: a biomechanical study in calf tibial bone. Arthroscopy 1998; 14 (01) 29-37
  • 14 Medeiros CBS. Avaliação de peças de poli (ácido lático)(PLA) impressas para aplicações biomédicas [dissertação]. Natal: Centro de Ciências Exatas e da Terra, Universidade Federal do Rio Grande do Norte; 2018
  • 15 Feltz KP, MacFadden LN, Gieg SD, Lough CP, Bezold WA, Skelley NWM. Mechanical properties of 3D-printed orthopedic one-third tubular plates and cortical screws. J 3D Print Med 2022. Available from: https://www.futuremedicine.com/doi/abs/10.2217/3dp-2022-0007
  • 16 Carvalho JRG, Conde G, Antonioli ML. et al. Biocompatibility and biodegradation of poly(lactic acid) (PLA) and an immiscible PLA/poly(ε-caprolactone) (PCL) blend compatibilized by poly(ε-caprolactone-b-tetrahydrofuran) implanted in horses. Polym J 2020; 52: 629-643
  • 17 Kamiya TY, Maceno MMC, Kleina M. . Methodology of Environmental and Financial Performance Evaluation in 3D Printing. In: SpringerBriefs in Applied Sciences and Technology; 2021. doi:10.1007/978-3-030-69695-5_2. Available from: https://link.springer.com/book/10.1007/978-3-030-69695-5?noAccess=true#toc
  • 18 Goes Filho PRS. Confecção e avaliação mecânica de implantes ortopédicos produzidos em poli (L-ácido lático) (PLLA) por impressoras 3D [dissertação]. Recife: Universidade Federal Rural de Pernambuco; 2016
  • 19 Corrigendum to. Corrigendum to “Mechanical Comparison of 3D-Printed Plates and Screws for Open Reduction and Internal Fixation of Fractures”. Orthop J Sports Med 2022; 10 (05) 23 259671221103840
  • 20 Tappa K, Jammalamadaka U, Weisman JA. et al. 3D Printing Custom Bioactive and Absorbable Surgical Screws, Pins, and Bone Plates for Localized Drug Delivery. J Funct Biomater 2019; 10 (02) 17
  • 21 MacLeod A, Patterson M, MacTear K, Gill HS. 3D printed locking osteosynthesis screw threads have comparable strength to machined or hand-tapped screw threads. J Orthop Res 2020; 38 (07) 1559-1565