Semin Thromb Hemost
DOI: 10.1055/s-0043-1770773
Review Article

Laboratory Diagnosis of Activated Protein C Resistance and Factor V Leiden

1   Department of Hematology and Blood Transfusion, School of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
,
Alieh Fazeli
2   Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
,
Akbar Dorgalaleh
1   Department of Hematology and Blood Transfusion, School of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
› Author Affiliations

Abstract

The factor V Leiden (FVL) polymorphism is known as the most common inherited risk factor for venous thrombosis. In turn, FVL is the leading cause of an activated protein C resistance (APCR) phenotype, in which the addition of exogenous activated protein C to plasma does not result in the expected anticoagulant effect. In the routine laboratory approach to the formal diagnosis of FVL, an initial positive screening plasma-based method for APCR is often performed, and only if needed, this is followed by a confirmatory DNA-based assay for FVL. Multiple methods with accepted sensitivity and specificity for determining an APCR/FVL phenotype are commonly categorized into two separate groups: (1) screening plasma-based assays, including qualitative functional clot-based assays, for APCR, and (2) confirmatory DNA-based molecular assays, entailing several tests and platforms, including polymerase chain reaction-based and non-PCR-based techniques, for FVL. This review will describe the methodological aspects of each laboratory test and prepare suggestions on the indication of APCR and FVL testing and method selection.



Publication History

Article published online:
10 July 2023

© 2023. Thieme. All rights reserved.

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 Lippi G, Favaloro EJ, Montagnana M, Manzato F, Guidi GC, Franchini M. Inherited and acquired factor V deficiency. Blood Coagul Fibrinolysis 2011; 22 (03) 160-166
  • 2 Dahlbäck B. Progress in the understanding of the protein C anticoagulant pathway. Int J Hematol 2004; 79 (02) 109-116
  • 3 Asselta R, Tenchini ML, Duga S. Inherited defects of coagulation factor V: the hemorrhagic side. J Thromb Haemost 2006; 4 (01) 26-34
  • 4 Williamson D, Brown K, Luddington R, Baglin C, Baglin T. Factor V Cambridge: a new mutation (Arg306–>Thr) associated with resistance to activated protein C. Blood 1998; 91 (04) 1140-1144
  • 5 Donahue BS. Factor V Leiden and perioperative risk. Anesth Analg 2004; 98 (06) 1623-1634
  • 6 Dahlbäck B, Carlsson M, Svensson PJ. Familial thrombophilia due to a previously unrecognized mechanism characterized by poor anticoagulant response to activated protein C: prediction of a cofactor to activated protein C. Proc Natl Acad Sci U S A 1993; 90 (03) 1004-1008
  • 7 Koster T, Rosendaal FR, de Ronde H, Briët E, Vandenbroucke JP, Bertina RM. Venous thrombosis due to poor anticoagulant response to activated protein C: Leiden Thrombophilia Study. Lancet 1993; 342 (8886-8887): 1503-1506
  • 8 Váradi K, Rosing J, Tans G, Pabinger I, Keil B, Schwarz HP. Factor V enhances the cofactor function of protein S in the APC-mediated inactivation of factor VIII: influence of the factor VR506Q mutation. Thromb Haemost 1996; 76 (02) 208-214
  • 9 Rosing J, Hoekema L, Nicolaes GA. et al. Effects of protein S and factor Xa on peptide bond cleavages during inactivation of factor Va and factor VaR506Q by activated protein C. J Biol Chem 1995; 270 (46) 27852-27858
  • 10 Cramer TJ, Griffin JH, Gale AJ. Factor V is an anticoagulant cofactor for activated protein C during inactivation of factor Va. Pathophysiol Haemost Thromb 2010; 37 (01) 17-23
  • 11 Cramer TJ, Griffin JH, Gale AJ. Factor V as anticoagulant cofactor for activated protein C in factor Va inactivation. Blood 2008; 112 (11) 3075-3075
  • 12 Lippi G, Danese E, Favaloro EJ, Montagnana M, Franchini M. Diagnostics in venous thromboembolism: from origin to future prospects. Semin Thromb Hemost 2015; 41 (04) 374-381
  • 13 Emmerich J, Rosendaal FR, Cattaneo M. et al; Study Group for Pooled-Analysis in Venous Thromboembolism. Combined effect of factor V Leiden and prothrombin 20210A on the risk of venous thromboembolism-pooled analysis of 8 case-control studies including 2310 cases and 3204 controls. Thromb Haemost 2001; 86 (03) 809-816
  • 14 Favaloro EJ. Genetic testing for thrombophilia-related genes: observations of testing patterns for factor V Leiden (G1691A) and prothrombin gene “Mutation”(G20210A). Semin Thromb Hemost 2019; 45 (07) 730-742
  • 15 Sedano-Balbás S, Lyons M, Cleary B, Murray M, Gaffney G, Maher M. Acquired activated protein C resistance, thrombophilia and adverse pregnancy outcomes: a study performed in an Irish cohort of pregnant women. J Pregnancy 2011; 2011 (244) 232840
  • 16 de Ronde H, Bertina RM. Laboratory diagnosis of APC-resistance: a critical evaluation of the test and the development of diagnostic criteria. Thromb Haemost 1994; 72 (06) 880-886
  • 17 Bertina RM. Factor V Leiden and other coagulation factor mutations affecting thrombotic risk. Clin Chem 1997; 43 (09) 1678-1683
  • 18 Oh H, Smith CL. Evolving methods for single nucleotide polymorphism detection: factor V Leiden mutation detection. J Clin Lab Anal 2011; 25 (04) 259-288
  • 19 Van Cott EM, Soderberg BL, Laposata M. Activated protein C resistance, the factor V Leiden mutation, and a laboratory testing algorithm. Arch Pathol Lab Med 2002; 126 (05) 577-582
  • 20 Trossaërt M, Conard J, Horellou MH. et al. Modified APC resistance assay for patients on oral anticoagulants. Lancet 1994; 344 (8938): 1709
  • 21 Gouault-Heilmann M, Leroy-Matheron C. Factor V Leiden-dependent APC resistance: improved sensitivity and specificity of the APC resistance test by plasma dilution in factor V-depleted plasma. Thromb Res 1996; 82 (03) 281-283
  • 22 Samama MS, Gouin-Thibault I, Trossaert M. et al. Low levels of protein S activity in factor V depleted plasma used in APC resistance test. Thromb Haemost 1998; 80 (04) 715-716
  • 23 Benattar N, Schved J-F, Biron-Andréani C. A new dilution for the modified APTT-based assay for activated protein C resistance: improvement of the reliability in patients with a lupus anticoagulant. Thromb Haemost 2000; 83 (06) 967-968
  • 24 Martorell JR, Muñoz-Castillo A, Gil JL. False positive activated protein C resistance test due to anti-phospholipid antibodies is corrected by platelet extract. Thromb Haemost 1995; 74 (02) 796-797
  • 25 Nowak-Göttl U, Kohlhase B, Vielhaber H, Aschka I, Schneppenheim R, Jürgens H. APC resistance in neonates and infants: adjustment of the APTT-based method. Thromb Res 1996; 81 (06) 665-670
  • 26 Baig MA. Comparative analysis of “APTT vs RVVT” based activated protein C resistance assay in the diagnosis of Factor V Leiden mutation. Indian J Pathol Microbiol 2020; 63 (02) 247-250
  • 27 Dean E, Favaloro EJ. The changing face of activated protein C resistance testing—a 10-year retrospective. Ann Blood 2020; 5 (01) 1-7
  • 28 Tripodi A, Negri B, Bertina RM, Mannucci PM. Screening for the FV:Q506 mutation–evaluation of thirteen plasma-based methods for their diagnostic efficacy in comparison with DNA analysis. Thromb Haemost 1997; 77 (03) 436-439
  • 29 Herskovits AZ, Lemire SJ, Longtine J, Dorfman DM. Comparison of Russell viper venom-based and activated partial thromboplastin time-based screening assays for resistance to activated protein C. Am J Clin Pathol 2008; 130 (05) 796-804
  • 30 Schoni R. The use of snake venom-derived compounds for new functional diagnostic test kits in the field of haemostasis. Pathophysiol Haemost Thromb 2005; 34 (4-5): 234-240
  • 31 Schöni R, Quehenberger P, Wu JR, Wilmer M. Clinical evaluation of a new functional test for detection of activated protein C resistance (Pefakit APC-R Factor V Leiden) at two centers in Europe and the USA. Thromb Res 2007; 119 (01) 17-26
  • 32 Gessoni G, Valverde S. Clinical evaluation of a functional prothrombin time-based assay for identification of factor V Leiden carriers in a group of Italian patients with venous thrombosis. Blood Coagul Fibrinolysis 2007; 18 (07) 603-610
  • 33 Mohammed S, Favaloro EJ. Laboratory testing for activated protein C resistance (APCR). In: Favaloro E, Lippi G. eds. Hemostasis and Thrombosis Methods in Molecular Biology. Vol 1646. Springer; 2017: 137-143
  • 34 Favaloro EJ, Mirochnik O, McDonald D. Functional activated protein C resistance assays: correlation with factor V DNA analysis is better with RVVT-than APTT-based assays. Br J Biomed Sci 1999; 56 (01) 23-33
  • 35 Favaloro EJ, Orsag I, Bukuya M, McDonald D. A 9-year retrospective assessment of laboratory testing for activated protein C resistance: evolution of a novel approach to thrombophilia investigations. Pathology 2002; 34 (04) 348-355
  • 36 Favaloro EJ, Gilmore G, Bonar R. et al. Laboratory testing for activated protein C resistance: rivaroxaban induced interference and a comparative evaluation of andexanet alfa and DOAC Stop to neutralise interference. Clin Chem Lab Med 2020; 58 (08) 1322-1331
  • 37 Favaloro EJ, Soltani S, McDonald J, Grezchnik E, Easton L. Activated protein C resistance: the influence of ABO-blood group, gender and age. Thromb Res 2006; 117 (06) 665-670
  • 38 Lippi G, Gosselin R, Favaloro EJ. Current and emerging direct oral anticoagulants: state-of-the-art. Semin Thromb Hemost 2019; 45 (05) 490-501
  • 39 Lippi G, Mattiuzzi C, Adcock D, Favaloro EJ. Oral anticoagulants around the world: an updated state-of-the art analysis. Ann Blood 2018; 3 (02) 49
  • 40 Favaloro EJ. Danger of false negative (exclusion) or false positive (diagnosis) for 'congenital thrombophilia' in the age of anticoagulants. Clin Chem Lab Med 2019; 57 (06) 873-882
  • 41 Favaloro EJ, Gilmore G, Arunachalam S, Mohammed S, Baker R. Neutralising rivaroxaban induced interference in laboratory testing for lupus anticoagulant (LA): a comparative study using DOAC Stop and andexanet alfa. Thromb Res 2019; 180 (02) 10-19
  • 42 Bonar R, Favaloro EJ, Mohammed S, Pasalic L, Sioufi J, Marsden K. The effect of dabigatran on haemostasis tests: a comprehensive assessment using in vitro and ex vivo samples. Pathology 2015; 47 (04) 355-364
  • 43 Favaloro EJ, Lippi G. Interference of direct oral anticoagulants in haemostasis assays: high potential for diagnostic false positives and false negatives. Blood Transfus 2017; 15 (06) 491-494
  • 44 Favaloro EJ, Pasalic L, Lippi G. Oral anticoagulation therapy: an update on usage, costs and associated risks. Pathology 2020; 52 (06) 736-741
  • 45 Exner T, Rigano J, Favaloro EJ. The effect of DOACs on laboratory tests and their removal by activated carbon to limit interference in functional assays. Int J Lab Hematol 2020; 42 (Suppl. 01) 41-48
  • 46 Kopytek M, Ząbczyk M, Malinowski KP, Undas A, Natorska J. DOAC-Remove abolishes the effect of direct oral anticoagulants on activated protein C resistance testing in real-life venous thromboembolism patients. Clin Chem Lab Med 2020; 58 (03) 430-437
  • 47 Jourdi G, Delrue M, Stepanian A. et al. Potential usefulness of activated charcoal (DOAC remove®) for dRVVT testing in patients receiving Direct Oral AntiCoagulants. Thromb Res 2019; 184 (12) 86-91
  • 48 Dean E, Bonar R, Favaloro EJ. Neutralisation of rivaroxaban interference on APCR, FVIII and FIX assays by DOAC-StoP And andexanet ALFA. Pathology 2020; 52 (Suppl. 01) S109
  • 49 Chapla A, Jayandharan GR, Sumitha E. et al. Molecular basis of hereditary factor V deficiency in India: identification of four novel mutations and their genotype-phenotype correlation. Thromb Haemost 2011; 105 (06) 1120-1123
  • 50 Tabibian S, Shiravand Y, Shams M. et al. A comprehensive overview of coagulation factor V and congenital factor V deficiency. Semin Thromb Hemost 2019; 45 (05) 523-543
  • 51 Simioni P, Scudeller A, Radossi P. et al. “Pseudo homozygous” activated protein C resistance due to double heterozygous factor V defects (factor V Leiden mutation and type I quantitative factor V defect) associated with thrombosis: report of two cases belonging to two unrelated kindreds. Thromb Haemost 1996; 75 (03) 422-426
  • 52 Dargaud Y, Trzeciak MC, Meunier S. et al. Two novel factor V null mutations associated with activated protein C resistance phenotype/genotype discrepancy. Br J Haematol 2003; 123 (02) 342-345
  • 53 Emadi A, Crim MT, Brotman DJ. et al. Analytic validity of genetic tests to identify factor V Leiden and prothrombin G20210A. Am J Hematol 2010; 85 (04) 264-270
  • 54 Bertina RM, Koeleman BP, Koster T. et al. Mutation in blood coagulation factor V associated with resistance to activated protein C. Nature 1994; 369 (6475): 64-67
  • 55 Keohane EM, Otto CN, Walenga JM. Rodak's Hematology-E-Book: Clinical Principles and Applications. Elsevier Health Sciences; 2019
  • 56 Newton CR, Graham A, Heptinstall LE. et al. Analysis of any point mutation in DNA. The amplification refractory mutation system (ARMS). Nucleic Acids Res 1989; 17 (07) 2503-2516
  • 57 Little S. Amplification-refractory mutation system (ARMS) analysis of point mutations. Curr Protoc Hum Genet 1995; 7 (01) 1-12
  • 58 Yandava CN, Zappulla DC, Korf BR, Neufeld EJ. ARMS test for diagnosis of factor VLeiden mutation, a common cause of inherited thrombotic tendency. J Clin Lab Anal 1996; 10 (06) 414-417
  • 59 Scobie GA, Ho ST, Dolan G, Kalsheker NA. Development of a rapid DNA screening procedure for the Factor V Leiden mutation. Clin Mol Pathol 1996; 49 (06) M361-M363
  • 60 Bertorini TE. Clinical Evaluation and Diagnostic Tests for Neuromuscular Disorders. Butterworth-Heinemann Medical; 2002
  • 61 Jameson JL, Collins F. Principles of Molecular Medicine. Springer; 1998
  • 62 Patri S, Salmeron S, Caillon M, Kitzis A, Chomel JC. Multiplex PCR for one-step determination of the G20210A variation and the factor V Leiden mutation by denaturing gradient gel electrophoresis (DGGE). Thromb Haemost 1999; 81 (02) 313-314
  • 63 Strathdee F, Free A. Denaturing gradient gel electrophoresis (DGGE). In: DNA Electrophoresis. Springer; 2013: 145-157
  • 64 Jaeckel S, Epplen JT, Kauth M, Miterski B, Tschentscher F, Epplen C. Polymerase chain reaction-single strand conformation polymorphism or how to detect reliably and efficiently each sequence variation in many samples and many genes. Electrophoresis 1998; 19 (18) 3055-3061
  • 65 Keeney S, Salden A, Hay C, Cumming A. A whole blood, multiplex PCR detection method for factor V Leiden and the prothrombin G20210A variant. Thromb Haemost 1999; 81 (03) 464-465
  • 66 Simundic AM, Topic E, Stefanovic M. Detection of factor V Leiden by PCR-SSCP using GMA precast Elchrom scientific gels. Clin Appl Thromb Hemost 2003; 9 (03) 227-231
  • 67 Meyer M, Kutscher G, Vogel G. Simultaneous genotyping for factor V Leiden and prothrombin G20210A variant by a multiplex PCR-SSCP assay on whole blood. Thromb Haemost 1999; 81 (01) 162-163
  • 68 Ryan D, Nuccie B, Arvan D. Non-PCR-dependent detection of the factor V Leiden mutation from genomic DNA using a homogeneous invader microtiter plate assay. Mol Diagn 1999; 4 (02) 135-144
  • 69 Hessner MJ, Budish MA, Friedman KD. Genotyping of factor V G1691A (Leiden) without the use of PCR by invasive cleavage of oligonucleotide probes. Clin Chem 2000; 46 (8 Pt 1): 1051-1056
  • 70 Ledford M, Friedman KD, Hessner MJ, Moehlenkamp C, Williams TM, Larson RS. A multi-site study for detection of the factor V (Leiden) mutation from genomic DNA using a homogeneous invader microtiter plate fluorescence resonance energy transfer (FRET) assay. J Mol Diagn 2000; 2 (02) 97-104
  • 71 Geiger K, Leiherer A, Brandtner E-M, Fraunberger P, Drexel H, Muendlein A. Direct blood PCR: TaqMan-probe based detection of the venous thromboembolism associated mutations factor V Leiden and prothrombin c.20210G>A without DNA extraction. Clin Chim Acta 2019; 488 (17) 221-225
  • 72 Sanders Sevall J. Factor V Leiden genotyping using real-time fluorescent polymerase chain reaction. Mol Cell Probes 2000; 14 (04) 249-253
  • 73 Louis M, Dekairelle AF, Gala JL. Rapid combined genotyping of factor V, prothrombin and methylenetetrahydrofolate reductase single nucleotide polymorphisms using minor groove binding DNA oligonucleotides (MGB probes) and real-time polymerase chain reaction. Clin Chem Lab Med 2004; 42 (12) 1364-1369
  • 74 Cooper PC, Cooper SM, Smith JM, Kitchen S, Makris M. Evaluation of the Roche LightCycler: a simple and rapid method for direct detection of factor V Leiden and prothrombin G20210A genotypes from blood samples without the need for DNA extraction. Blood Coagul Fibrinolysis 2003; 14 (05) 499-503
  • 75 Lay MJ, Wittwer CT. Real-time fluorescence genotyping of factor V Leiden during rapid-cycle PCR. Clin Chem 1997; 43 (12) 2262-2267
  • 76 Lyondagger E, Millsondagger A, Phan T, Wittwer CT. Detection and identification of base alterations within the region of factor V Leiden by fluorescent melting curves. Mol Diagn 1998; 3 (04) 203-209
  • 77 Lyon E. Mutation detection using fluorescent hybridization probes and melting curve analysis. Expert Rev Mol Diagn 2001; 1 (01) 92-101
  • 78 Bennett CD, Campbell MN, Cook CJ. et al. The LightTyper: high-throughput genotyping using fluorescent melting curve analysis. Biotechniques 2003; 34 (06) 1288-1292 , 1294–1295
  • 79 Brazma A, Hingamp P, Quackenbush J. et al. Minimum information about a microarray experiment (MIAME)-toward standards for microarray data. Nat Genet 2001; 29 (04) 365-371
  • 80 Schena M, Shalon D, Davis RW, Brown PO. Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 1995; 270 (5235): 467-470
  • 81 Lefferts JA, Jannetto P, Tsongalis GJ. Evaluation of the Nanosphere Verigene System and the Verigene F5/F2/MTHFR Nucleic Acid Tests. Exp Mol Pathol 2009; 87 (02) 105-108
  • 82 Rochelet-Dequaire M, Limoges B, Brossier P. Subfemtomolar electrochemical detection of target DNA by catalytic enlargement of the hybridized gold nanoparticle labels. Analyst (Lond) 2006; 131 (08) 923-929
  • 83 Keen-Kim D, Grody WW, Richards CS. Microelectronic array system for molecular diagnostic genotyping: Nanogen NanoChip 400 and molecular biology workstation. Expert Rev Mol Diagn 2006; 6 (03) 287-294
  • 84 Evans JG, Lee-Tataseo C. Determination of the factor V Leiden single-nucleotide polymorphism in a commercial clinical laboratory by use of NanoChip microelectronic array technology. Clin Chem 2002; 48 (09) 1406-1411
  • 85 Schrijver I, Lay MJ, Zehnder JL. Diagnostic single nucleotide polymorphism analysis of factor V Leiden and prothrombin 20210G > A. A comparison of the Nanogen Eelectronic Microarray with restriction enzyme digestion and the Roche LightCycler. Am J Clin Pathol 2003; 119 (04) 490-496
  • 86 Zhang S, Taylor AK, Huang X. et al; ACMG Laboratory Quality Assurance Committee. Venous thromboembolism laboratory testing (factor V Leiden and factor II c.*97G>A), 2018 update: a technical standard of the American College of Medical Genetics and Genomics (ACMG). Genet Med 2018; 20 (12) 1489-1498
  • 87 Grody WW, Griffin JH, Taylor AK, Korf BR, Heit JA. ACMG Factor V. Leiden Working Group. American College of Medical Genetics consensus statement on factor V Leiden mutation testing. Genet Med 2001; 3 (02) 139-148
  • 88 Bhatt S, Taylor AK, Lozano R, Grody WW, Griffin JH. ACMG Professional Practice and Guidelines Committee. Addendum: American College of Medical Genetics consensus statement on factor V Leiden mutation testing. Genet Med 2021; 23 (12) 2463
  • 89 Donahue BS, Gailani D, Higgins MS, Drinkwater DC, George Jr AL. Factor V Leiden protects against blood loss and transfusion after cardiac surgery. Circulation 2003; 107 (07) 1003-1008
  • 90 Rosendaal FR, Siscovick DS, Schwartz SM. et al. Factor V Leiden (resistance to activated protein C) increases the risk of myocardial infarction in young women. Blood 1997; 89 (08) 2817-2821
  • 91 Press RD, Bauer KA, Kujovich JL, Heit JA. Clinical utility of factor V Leiden (R506Q) testing for the diagnosis and management of thromboembolic disorders. Arch Pathol Lab Med 2002; 126 (11) 1304-1318
  • 92 Kujovich JL. Factor V Leiden thrombophilia. Genet Med 2011; 13 (01) 1-16
  • 93 Ridker PM, Miletich JP, Hennekens CH, Buring JE. Ethnic distribution of factor V Leiden in 4047 men and women. Implications for venous thromboembolism screening. JAMA 1997; 277 (16) 1305-1307
  • 94 Rees DC, Cox M, Clegg JB. World distribution of factor V Leiden. Lancet 1995; 346 (8983): 1133-1134
  • 95 Tormene D, Simioni P, Prandoni P. et al. Factor V Leiden mutation and the risk of venous thromboembolism in pregnant women. Haematologica 2001; 86 (12) 1305-1309
  • 96 Baré SN, Póka R, Balogh I, Ajzner E. Factor V Leiden as a risk factor for miscarriage and reduced fertility. Aust N Z J Obstet Gynaecol 2000; 40 (02) 186-190
  • 97 Norstrøm E, Thorelli E, Dahlbäck B. Functional characterization of recombinant FV Hong Kong and FV Cambridge. Blood 2002; 100 (02) 524-530
  • 98 Nogami K, Shinozawa K, Ogiwara K. et al. Novel FV mutation (W1920R, FVNara) associated with serious deep vein thrombosis and more potent APC resistance relative to FVLeiden. Blood 2014; 123 (15) 2420-2428
  • 99 Mumford AD, McVey JH, Morse CV. et al. Factor V I359T: a novel mutation associated with thrombosis and resistance to activated protein C. Br J Haematol 2003; 123 (03) 496-501
  • 100 Pezeshkpoor B, Castoldi E, Mahler A. et al. Identification and functional characterization of a novel F5 mutation (Ala512Val, FVB onn ) associated with activated protein C resistance. J Thromb Haemost 2016; 14 (07) 1353-1363
  • 101 Otrock ZK, Taher AT, Shamseddeen WA, Zaatari G, Bazarbachi A, Mahfouz RA. Factor V HR2 haplotype: a risk factor for venous thromboembolism in individuals with absence of Factor V Leiden. Ann Hematol 2008; 87 (12) 1013-1016