CC BY 4.0 · Indian Journal of Neurosurgery 2023; 12(02): 097-103
DOI: 10.1055/s-0043-1770910
Review Article

Molecular Imaging of Glial Tumors: Established and Emerging Tracers

1   Department of Nuclear Medicine and Molecular Imaging, Tata Memorial Center, Homi Bhabha National Institute, Mumbai, Maharashtra, India
,
Venkatesh Rangarajan
1   Department of Nuclear Medicine and Molecular Imaging, Tata Memorial Center, Homi Bhabha National Institute, Mumbai, Maharashtra, India
,
Nilendu C. Purandare
1   Department of Nuclear Medicine and Molecular Imaging, Tata Memorial Center, Homi Bhabha National Institute, Mumbai, Maharashtra, India
,
1   Department of Nuclear Medicine and Molecular Imaging, Tata Memorial Center, Homi Bhabha National Institute, Mumbai, Maharashtra, India
› Author Affiliations

Abstract

Various positron emission tomography (PET) tracers have been developed and extensively studied in the field of neuro-oncology imaging. In the management of brain tumors, accurate delineation of tumor extent, assessment of treatment response, and detection of early recurrence are the most important factors. At present, conventional anatomical imaging paired with amino acid tracer PET imaging is the recommended imaging modality for glial tumor evaluation. Newer PET tracers targeting various structures in the tumor microenvironment have been extensively studied. This review summarizes the established and emerging PET tracers having potential impact on neuro-oncology practice.



Publication History

Article published online:
24 July 2023

© 2023. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting unrestricted use, distribution, and reproduction so long as the original work is properly cited. (https://creativecommons.org/licenses/by/4.0/)

Thieme Medical and Scientific Publishers Pvt. Ltd.
A-12, 2nd Floor, Sector 2, Noida-201301 UP, India

 
  • References

  • 1 Hanif F, Muzaffar K, Perveen K, Malhi SM, Simjee ShU. glioblastoma multiforme: a review of its epidemiology and pathogenesis through clinical presentation and treatment. Asian Pac J Cancer Prev 2017; 18 (01) 3-9
  • 2 Liang J, Lv X, Lu C. et al. Prognostic factors of patients with gliomas - an analysis on 335 patients with glioblastoma and other forms of gliomas. BMC Cancer 2020; 20 (01) 35
  • 3 Strauss SB, Meng A, Ebani EJ, Chiang GC. Imaging glioblastoma posttreatment: progression, pseudoprogression, pseudoresponse, radiation necrosis. Radiol Clin North Am 2019; 57 (06) 1199-1216
  • 4 Dhermain FG, Hau P, Lanfermann H, Jacobs AH, van den Bent MJ. Advanced MRI and PET imaging for assessment of treatment response in patients with gliomas. Lancet Neurol 2010; 9 (09) 906-920
  • 5 Kumar AJ, Leeds NE, Fuller GN. et al. Malignant gliomas: MR imaging spectrum of radiation therapy- and chemotherapy-induced necrosis of the brain after treatment. Radiology 2000; 217 (02) 377-384
  • 6 Ahluwalia MS, Wen PY. Antiangiogenic therapy for patients with glioblastoma: current challenges in imaging and future directions. Expert Rev Anticancer Ther 2011; 11 (05) 653-656
  • 7 Wen PY, Macdonald DR, Reardon DA. et al. Updated response assessment criteria for high-grade gliomas: response assessment in neuro-oncology working group. J Clin Oncol 2010; 28 (11) 1963-1972
  • 8 Werner JM, Lohmann P, Fink GR, Langen KJ, Galldiks N. Current landscape and emerging fields of PET imaging in patients with brain tumors. Molecules 2020; 25 (06) 1471
  • 9 Albert NL, Weller M, Suchorska B. et al. Response assessment in neuro-oncology working group and European Association for Neuro-oncology recommendations for the clinical use of PET imaging in gliomas. Neuro-oncol 2016; 18 (09) 1199-1208
  • 10 Almuhaideb A, Papathanasiou N, Bomanji J. 18F-FDG PET/CT imaging in oncology. Ann Saudi Med 2011; 31 (01) 3-13
  • 11 Kawada K, Iwamoto M, Sakai Y. Mechanisms underlying 18F-fluorodeoxyglucose accumulation in colorectal cancer. World J Radiol 2016; 8 (11) 880-886
  • 12 Rahman WT, Wale DJ, Viglianti BL. et al. The impact of infection and inflammation in oncologic 18F-FDG PET/CT imaging. Biomed Pharmacother 2019; 117: 109168
  • 13 Galldiks N, Langen KJ, Albert NL. et al. PET imaging in patients with brain metastasis-report of the RANO/PET group. Neuro-oncol 2019; 21 (05) 585-595
  • 14 Gupta M, Gupta T, Purandare N. et al. Utility of flouro-deoxy-glucose positron emission tomography/computed tomography in the diagnostic and staging evaluation of patients with primary CNS lymphoma. CNS Oncol 2019; 8 (04) CNS46
  • 15 Gupta T, Manjali JJ, Kannan S, Purandare N, Rangarajan V. Diagnostic performance of pretreatment 18F-fluorodeoxyglucose positron emission tomography with or without computed tomography in patients with primary central nervous system lymphoma: updated systematic review and diagnostic test accuracy meta-analyses. Clin Lymphoma Myeloma Leuk 2021; 21 (08) 497-507
  • 16 Zou Y, Tong J, Leng H, Jiang J, Pan M, Chen Z. Diagnostic value of using 18F-FDG PET and PET/CT in immunocompetent patients with primary central nervous system lymphoma: a systematic review and meta-analysis. Oncotarget 2017; 8 (25) 41518-41528
  • 17 Purandare NC, Puranik A, Shah S. et al. Common malignant brain tumors: can 18F-FDG PET/CT aid in differentiation?. Nucl Med Commun 2017; 38 (12) 1109-1116
  • 18 Dankbaar JW, Snijders TJ, Robe PA. et al. The use of (18)F-FDG PET to differentiate progressive disease from treatment induced necrosis in high grade glioma. J Neurooncol 2015; 125 (01) 167-175
  • 19 Dev ID, Puranik AD, Purandare NC. et al. Prognostic significance of 18F-FDG PET/CT parameters in IDH-1 wild-type GBM and correlation with molecular markers. Nucl Med Commun 2021; 42 (11) 1233-1238
  • 20 Patronas NJ, Di Chiro G, Kufta C. et al. Prediction of survival in glioma patients by means of positron emission tomography. J Neurosurg 1985; 62 (06) 816-822
  • 21 Langen KJ, Galldiks N, Hattingen E, Shah NJ. Advances in neuro-oncology imaging. Nat Rev Neurol 2017; 13 (05) 279-289
  • 22 Youland RS, Kitange GJ, Peterson TE. et al. The role of LAT1 in (18)F-DOPA uptake in malignant gliomas. J Neurooncol 2013; 111 (01) 11-18
  • 23 Papin-Michault C, Bonnetaud C, Dufour M. et al. Study of LAT1 expression in brain metastases: towards a better understanding of the results of positron emission tomography using amino acid tracers. PLoS One 2016; 11 (06) e0157139
  • 24 Wiriyasermkul P, Nagamori S, Tominaga H. et al. Transport of 3-fluoro-L-α-methyl-tyrosine by tumor-upregulated L-type amino acid transporter 1: a cause of the tumor uptake in PET. J Nucl Med 2012; 53 (08) 1253-1261
  • 25 Okubo S, Zhen HN, Kawai N, Nishiyama Y, Haba R, Tamiya T. Correlation of L-methyl-11C-methionine (MET) uptake with L-type amino acid transporter 1 in human gliomas. J Neurooncol 2010; 99 (02) 217-225
  • 26 Dunet V, Rossier C, Buck A, Stupp R, Prior JO. Performance of 18F-fluoro-ethyl-tyrosine (18F-FET) PET for the differential diagnosis of primary brain tumor: a systematic review and metaanalysis. J Nucl Med 2012; 53 (02) 207-214
  • 27 Puranik AD, Boon M, Purandare N. et al. Utility of FET-PET in detecting high-grade gliomas presenting with equivocal MR imaging features. World J Nucl Med 2019; 18 (03) 266-272
  • 28 Lohmann P, Stavrinou P, Lipke K. et al. FET PET reveals considerable spatial differences in tumour burden compared to conventional MRI in newly diagnosed glioblastoma. Eur J Nucl Med Mol Imaging 2019; 46 (03) 591-602
  • 29 Suchorska B, Jansen NL, Linn J. et al; German Glioma Network. Biological tumor volume in 18FET-PET before radiochemotherapy correlates with survival in GBM. Neurology 2015; 84 (07) 710-719
  • 30 Harat M, Blok M, Miechowicz I, Wiatrowska I, Makarewicz K, Małkowski B. Safety and efficacy of irradiation boost based on 18F-FET-PET in patients with newly diagnosed glioblastoma. Clin Cancer Res 2022; 28 (14) 3011-3020
  • 31 Laack NN, Pafundi D, Anderson SK. et al. Initial results of a phase 2 trial of 18F DOPA PET-guided dose-escalated radiation therapy for glioblastoma. Int J Radiat Oncol Biol Phys 2021; 110 (05) 1383-1395
  • 32 Weller M, van den Bent M, Hopkins K. et al; European Association for Neuro-Oncology (EANO) Task Force on Malignant Glioma. EANO guideline for the diagnosis and treatment of anaplastic gliomas and glioblastoma. Lancet Oncol 2014; 15 (09) e395-e403
  • 33 Stupp R, Dietrich P-Y, Ostermann Kraljevic S. et al. Promising survival for patients with newly diagnosed glioblastoma multiforme treated with concomitant radiation plus temozolomide followed by adjuvant temozolomide. J Clin Oncol 2002; 20 (05) 1375-1382
  • 34 Habermeier A, Graf J, Sandhöfer BF, Boissel JP, Roesch F, Closs EI. System L amino acid transporter LAT1 accumulates O-(2-fluoroethyl)-L-tyrosine (FET). Amino Acids 2015; 47 (02) 335-344
  • 35 Mehrkens JH, Pöpperl G, Rachinger W. et al. The positive predictive value of O-(2-[18F]fluoroethyl)-L-tyrosine (FET) PET in the diagnosis of a glioma recurrence after multimodal treatment. J Neurooncol 2008; 88 (01) 27-35
  • 36 Pöpperl G, Götz C, Rachinger W, Gildehaus FJ, Tonn JC, Tatsch K. Value of O-(2-[18F]fluoroethyl)- L-tyrosine PET for the diagnosis of recurrent glioma. Eur J Nucl Med Mol Imaging 2004; 31 (11) 1464-1470
  • 37 Pöpperl G, Götz C, Rachinger W. et al. Serial O-(2-[(18)F]fluoroethyl)-L: -tyrosine PET for monitoring the effects of intracavitary radioimmunotherapy in patients with malignant glioma. Eur J Nucl Med Mol Imaging 2006; 33 (07) 792-800
  • 38 Piroth MD, Pinkawa M, Holy R. et al. Prognostic value of early [18F]fluoroethyltyrosine positron emission tomography after radiochemotherapy in glioblastoma multiforme. Int J Radiat Oncol Biol Phys 2011; 80 (01) 176-184
  • 39 Van Mieghem E, Wozniak A, Geussens Y. et al. Defining pseudoprogression in glioblastoma multiforme. Eur J Neurol 2013; 20 (10) 1335-1341
  • 40 Puranik AD, Rangarajan V, Dev ID. et al. Brain FET PET tumor-to-white mater ratio to differentiate recurrence from post-treatment changes in high-grade gliomas. J Neuroimaging 2021; 31 (06) 1211-1218
  • 41 Contractor KB, Kenny LM, Stebbing J. et al. [11C]choline positron emission tomography in estrogen receptor-positive breast cancer. Clin Cancer Res 2009; 15 (17) 5503-5510
  • 42 Li W, Ma L, Wang X, Sun J, Wang S, Hu X. (11)C-choline PET/CT tumor recurrence detection and survival prediction in post-treatment patients with high-grade gliomas. Tumour Biol 2014; 35 (12) 12353-12360
  • 43 Bolcaen J, Acou M, Boterberg T. et al. 18F-FCho PET and MRI for the prediction of response in glioblastoma patients according to the RANO criteria. Nucl Med Commun 2017; 38 (03) 242-249
  • 44 Choudhary G, Langen KJ, Galldiks N, McConathy J. Investigational PET tracers for high-grade gliomas. Q J Nucl Med Mol Imaging 2018; 62 (03) 281-294
  • 45 Chen W, Delaloye S, Silverman DH. et al. Predicting treatment response of malignant gliomas to bevacizumab and irinotecan by imaging proliferation with [18F] fluorothymidine positron emission tomography: a pilot study. J Clin Oncol 2007; 25 (30) 4714-4721
  • 46 Li Z, Yu Y, Zhang H, Xu G, Chen L. A meta-analysis comparing 18F-FLT PET with 18F-FDG PET for assessment of brain tumor recurrence. Nucl Med Commun 2015; 36 (07) 695-701
  • 47 Bell C, Dowson N, Fay M. et al. Hypoxia imaging in gliomas with 18F-fluoromisonidazole PET: toward clinical translation. Semin Nucl Med 2015; 45 (02) 136-150
  • 48 Yamaguchi S, Hirata K, Toyonaga T. et al. Change in 18F-fluoromisonidazole PET is an early predictor of the prognosis in the patients with recurrent high-grade glioma receiving bevacizumab treatment. PLoS One 2016; 11 (12) e0167917
  • 49 Windisch P, Röhrich M, Regnery S. et al. Fibroblast activation protein (FAP) specific PET for advanced target volume delineation in glioblastoma. Radiother Oncol 2020; 150: 159-163
  • 50 Huang R, Pu Y, Huang S. et al. FAPI-PET/CT in cancer imaging: a potential novel molecule of the century. Front Oncol 2022; 12: 854658
  • 51 Wernicke AG, Edgar MA, Lavi E. et al. Prostate-specific membrane antigen as a potential novel vascular target for treatment of glioblastoma multiforme. Arch Pathol Lab Med 2011; 135 (11) 1486-1489
  • 52 Kunikowska J, Kuliński R, Muylle K, Koziara H, Królicki L. 68Ga-prostate-specific membrane antigen-11 PET/CT: a new imaging option for recurrent glioblastoma multiforme?. Clin Nucl Med 2020; 45 (01) 11-18
  • 53 Marafi F, Sasikumar A, Fathallah W, Esmail A. 18F-PSMA 1007 brain PET/CT imaging in glioma recurrence. Clin Nucl Med 2020; 45 (01) e61-e62