Semin Neurol 2023; 43(04): 598-608
DOI: 10.1055/s-0043-1771462
Review Article

Gastrointestinal Dysfunction in Multiple Sclerosis and Related Conditions

Ryuji Sakakibara
1   Neurology Clinic Tsudanuma & Dowakai Chiba Hospital Funabashi, Japan
› Author Affiliations

Abstract

Nervous system disorders may be accompanied by gastrointestinal (GI) dysfunction. Brain lesions may be responsible for GI problems such as decreased peristalsis (e.g., lesions in the basal ganglia, pontine defecation center/Barrington's nucleus), decreased abdominal strain (e.g., lesions in the parabrachial nucleus), hiccupping and vomiting (e.g., lesions in the area postrema), and appetite loss (e.g., lesions in the hypothalamus). Decreased peristalsis also may be caused by lesions of the spinal long tracts or the intermediolateral nucleus projecting to the myenteric plexus. This review addresses GI dysfunction caused by multiple sclerosis, neuromyelitis optica spectrum disorder, and myelin oligodendrocyte glycoprotein-associated disorder. Neuro-associated GI dysfunction may develop concurrently with brain or spinal cord dysfunction or may predate it. Collaboration between gastroenterologists and neurologists is highly desirable when caring for patients with GI dysfunction related to nervous system disorders, particularly since patients with these symptoms may visit a gastroenterologist prior to the establishment of a neurological diagnosis.



Publication History

Article published online:
13 September 2023

© 2023. Thieme. All rights reserved.

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 Sakakibara R. Gastrointestinal dysfunction in neuroinflammatory diseases: Multiple sclerosis, neuromyelitis optica, acute autonomic ganglionopathy and related conditions. Auton Neurosci 2021; 232: 102795
  • 2 Costa M, Brookes SJH, Hennig GW. Anatomy and physiology of the enteric nervous system. Gut 2000; 47 (Suppl. 04) iv15-iv19 , discussion iv26
  • 3 Furness JB, Callaghan BP, Rivera LR, Cho HJ. The enteric nervous system and gastrointestinal innervation: integrated local and central control. Adv Exp Med Biol 2014; 817: 39-71
  • 4 Camilleri M. Gastrointestinal motility disorders in neurologic disease. J Clin Invest 2021; 131 (04) e143771
  • 5 Pfeiffer RF. Gastroenterology and neurology. Continuum (Minneap Minn) 2017; 23 (Suppl. 03) 744-761
  • 6 Camborová P, Hubka P, Sulková I, Hulín I. The pacemaker activity of interstitial cells of Cajal and gastric electrical activity. Physiol Res 2003; 52 (03) 275-284
  • 7 Tonini M. 5-Hydroxytryptamine effects in the gut: the 3, 4, and 7 receptors. Neurogastroenterol Motil 2005; 17 (05) 637-642
  • 8 Liu MT, Rayport S, Jiang Y, Murphy DL, Gershon MD. Expression and function of 5-HT3 receptors in the enteric neurons of mice lacking the serotonin transporter. Am J Physiol Gastrointest Liver Physiol 2002; 283 (06) G1398-G1411
  • 9 Walker JK, Gainetdinov RR, Mangel AW, Caron MG, Shetzline MA. Mice lacking the dopamine transporter display altered regulation of distal colonic motility. Am J Physiol Gastrointest Liver Physiol 2000; 279 (02) G311-G318
  • 10 Anlauf M, Schäfer MKH, Eiden L, Weihe E. Chemical coding of the human gastrointestinal nervous system: cholinergic, VIPergic, and catecholaminergic phenotypes. J Comp Neurol 2003; 459 (01) 90-111
  • 11 Li ZS, Schmauss C, Cuenca A, Ratcliffe E, Gershon MD. Physiological modulation of intestinal motility by enteric dopaminergic neurons and the D2 receptor: analysis of dopamine receptor expression, location, development, and function in wild-type and knock-out mice. J Neurosci 2006; 26 (10) 2798-2807
  • 12 Ron Y, Leibovitz A, Monastirski N, Habot B, Segal R. Colonic transit time in diabetic and nondiabetic long-term care patients. Gerontology 2002; 48 (04) 250-253
  • 13 Ito T, Sakakibara R, Ito S. et al. Mechanism of constipation in familial amyloid polyneuropathy: a case report. Intern Med 2006; 45 (20) 1173-1175
  • 14 Hosoe N, Sakakibara R, Yoshida M. et al. Acute, severe constipation in a 58-year-old Japanese patient. Gut 2011; 60 (08) 1059 , 1093
  • 15 Sakakibara R, Awa Y, Naya Y, Tobe T, Uchiyama T, Hattori T. Neobladder overactivity; an equivalent to spontaneous rectal contraction. Int J Urol 2007; 14 (11) 1054-1056
  • 16 Wakabayashi K, Takahashi H. Neuropathology of autonomic nervous system in Parkinson's disease. Eur Neurol 1997; 38 (Suppl. 02) 2-7
  • 17 Nathan PW, Smith MC. Spinal pathways subserving defaecation and sensation from the lower bowel. J Neurol Neurosurg Psychiatry 1953; 16 (04) 245-256
  • 18 Kanesaka T, Sakakibara R, Ito S. et al. Intestinal pseudo-obstruction in acute myelitis. Intern Med 2006; 45 (01) 35-36
  • 19 Rodriguez GM, Gater DR. Neurogenic bowel and management after spinal cord injury: a narrative review. J Pers Med 2022; 12 (07) 1141
  • 20 Sakakibara R, Yamaguchi T, Uchiyama T. et al. Calcium polycarbophil improves constipation in non-traumatic spinal cord disorders. Clin Auton Res 2006; 16 (04) 289-292
  • 21 Xia MM, Cherepanoff S, Winder MJ. Neurenteric cyst of the area postrema causing intractable nausea and vomiting. J Clin Neurosci 2019; 68: 346-348
  • 22 Alexander III E, Siddon RL, Loeffler JS. The acute onset of nausea and vomiting following stereotactic radiosurgery: correlation with total dose to area postrema. Surg Neurol 1989; 32 (01) 40-44
  • 23 Cohen DT, Craven C, Bragin I. Ischemic stroke induced area postrema syndrome with intractable nausea, vomiting, and hiccups. Cureus 2020; 12 (06) e8630
  • 24 Sawai S, Sakakibara R, Kanai K. et al. Isolated vomiting due to a unilateral dorsal vagal complex lesion. Eur Neurol 2006; 56 (04) 246-248
  • 25 Weber J, Denis P, Mihout B. et al. Effect of brain-stem lesion on colonic and anorectal motility. Study of three patients. Dig Dis Sci 1985; 30 (05) 419-425
  • 26 Tateno F, Sakakibara R, Kishi M. et al. Brainstem stroke and increased anal tone. Low Urin Tract Symptoms 2012; 4 (03) 161-163
  • 27 Sakakibara R, Odaka T, Uchiyama T. et al. Colonic transit time and rectoanal videomanometry in Parkinson's disease. J Neurol Neurosurg Psychiatry 2003; 74 (02) 268-272
  • 28 Connors MH, Sheikholislam BM. Hypothalamic symptomatology and its relationship to diencephalic tumor in childhood. Childs Brain 1977; 3 (01) 31-36
  • 29 Ito T, Sakakibara R, Sakakibara Y, Mori M, Hattori T. Medulla and gut. Intern Med 2004; 43 (11) 1091 DOI: 10.2169/internalmedicine.43.1091.
  • 30 Ospina-García N, Román GC, Pascual B, Schwartz MR, Preti HA. Hypothalamic relapse of a cardiac large B-cell lymphoma presenting with memory loss, confabulation, alexia-agraphia, apathy, hypersomnia, appetite disturbances and diabetes insipidus. BMJ Case Rep 2018; 2018: bcr2016217700
  • 31 Al-Zubaidi A, Heldmann M, Mertins A, Jauch-Chara K, Münte TF. Influences of hunger, satiety and oral glucose on functional brain connectivity: a multimethod resting-state fMRI study. Neuroscience 2018; 382: 80-92
  • 32 Arai E, Arai M, Uchiyama T. et al. Subthalamic deep brain stimulation can improve gastric emptying in Parkinson's disease. Brain 2012; 135 (Pt 5): 1478-1485
  • 33 Kano M, Oudenhove LV, Dupont P, Wager TD, Fukudo S. Imaging brain mechanisms of functional somatic syndromes: potential as a biomarker?. Tohoku J Exp Med 2020; 250 (03) 137-152
  • 34 Walton C, King R, Rechtman L. et al. Rising prevalence of multiple sclerosis worldwide: Insights from the Atlas of MS, third edition. Mult Scler 2020; 26 (14) 1816-1821
  • 35 Esmaeil Amini M, Shomali N, Bakhshi A. et al. Gut microbiome and multiple sclerosis: New insights and perspective. Int Immunopharmacol 2020; 88: 107024
  • 36 Wagley S, Bokori-Brown M, Morcrette H. et al. Evidence of Clostridium perfringens epsilon toxin associated with multiple sclerosis. Mult Scler 2019; 25 (05) 653-660
  • 37 Blackburn KM, Kubiliun M, Harris S, Vernino S. Neurological autoimmune disorders with prominent gastrointestinal manifestations: a review of presentation, evaluation, and treatment. Neurogastroenterol Motil 2019; 31 (10) e13611
  • 38 Ito T, Sakakibara R, Sakakibara Y, Mori M, Hattori T. Medulla and gut. Intern Med 2004; 43 (11) 1091
  • 39 Koh YH, Ratnagopal P. Multiple sclerosis with intractable vomiting and atypical area postrema lesion. Mult Scler Relat Disord 2020; 45: 102348
  • 40 Deng B, Wang J, Yu H. et al. Area postrema syndrome in autoimmune glial fibrillary acidic protein astrocytopathy: a case series and literature review. Neurol Neuroimmunol Neuroinflamm 2022; 9 (06) e200029
  • 41 Levinthal DJ, Rahman A, Nusrat S, O’Leary M, Heyman R, Bielefeldt K. Adding to the burden: gastrointestinal symptoms and syndromes in multiple sclerosis. Mult Scler Int 2013; 2013: 319201 DOI: 10.1155/2013/319201.
  • 42 Khanna L, Zeydan B, Kantarci OH, Camilleri M. Gastrointestinal motility disorders in patients with multiple sclerosis: A single-center study. Neurogastroenterol Motil 2022; 34 (08) e14326 DOI: 10.1111/nmo.14326.
  • 43 Preziosi G, Gordon-Dixon A, Emmanuel A. Neurogenic bowel dysfunction in patients with multiple sclerosis: prevalence, impact, and management strategies. Degener Neurol Neuromuscul Dis 2018; 8: 79-90
  • 44 Almeida MN, Silvernale C, Kuo B, Staller K. Bowel symptoms predate the diagnosis among many patients with multiple sclerosis: a 14-year cohort study. Neurogastroenterol Motil 2019; 31 (06) e13592
  • 45 Lawthom C, Durdey P, Hughes T. Constipation as a presenting symptom. Lancet 2003; 362 (9388) 958
  • 46 Drulović J, Gavrilović A, Crnošija L. et al. Validation and cross-cultural adaptation of the COMPASS-31 in Croatian and Serbian patients with multiple sclerosis. Croat Med J 2017; 58 (05) 342-348
  • 47 Cortez MM, Nagi Reddy SK, Goodman B, Carter JL, Wingerchuk DM. Autonomic symptom burden is associated with MS-related fatigue and quality of life. Mult Scler Relat Disord 2015; 4 (03) 258-263
  • 48 Kale N, Magana S, Agaoglu J, Tanik O. Assessment of autonomic nervous system dysfunction in multiple sclerosis and association with clinical disability. Neurol Int 2009; 1 (01) e5
  • 49 Gunal DI, Afsar N, Tanridag T, Aktan S. Autonomic dysfunction in multiple sclerosis: correlation with disease-related parameters. Eur Neurol 2002; 48 (01) 1-5
  • 50 Sakakibara R, Mori M, Fukutake T, Kita K, Hattori T. Orthostatic hypotension in a case with multiple sclerosis. Clin Auton Res 1997; 7 (03) 163-165
  • 51 Adamec I, Bach I, Barušić AK, Mišmaš A, Habek M. Assessment of prevalence and pathological response to orthostatic provocation in patients with multiple sclerosis. J Neurol Sci 2013; 324 (1-2): 80-83
  • 52 Habek M, Krbot Skorić M, Crnošija L, Adamec I. Brainstem dysfunction protects against syncope in multiple sclerosis. J Neurol Sci 2015; 357 (1-2): 69-74
  • 53 de Seze J, Stojkovic T, Gauvrit JY. et al. Autonomic dysfunction in multiple sclerosis: cervical spinal cord atrophy correlates. J Neurol 2001; 248 (04) 297-303
  • 54 Smith AL, Weissbart SJ, Hartigan SM. et al. Association between urinary symptom severity and white matter plaque distribution in women with multiple sclerosis. Neurourol Urodyn 2020; 39 (01) 339-346
  • 55 Weissbart SJ, Pechersky D, Malykhina A. et al. The impact of pontine disease on lower urinary tract symptoms in patients with multiple sclerosis. Neurourol Urodyn 2017; 36 (02) 453-456
  • 56 Araki I, Matsui M, Ozawa K, Takeda M, Kuno S. Relationship of bladder dysfunction to lesion site in multiple sclerosis. J Urol 2003; 169 (04) 1384-1387
  • 57 Charil A, Zijdenbos AP, Taylor J. et al. Statistical mapping analysis of lesion location and neurological disability in multiple sclerosis: application to 452 patient data sets. Neuroimage 2003; 19 (03) 532-544
  • 58 Preziosi G, Raptis DA, Raeburn A, Panicker J, Emmanuel A. Autonomic rectal dysfunction in patients with multiple sclerosis and bowel symptoms is secondary to spinal cord disease. Dis Colon Rectum 2014; 57 (04) 514-521
  • 59 Khanna L, Zeydan B, Kantarci OH, Camilleri M. Gastrointestinal motility disorders in patients with multiple sclerosis: a single-center study. Neurogastroenterol Motil 2022; 34 (08) e14326
  • 60 Reddymasu SC, Bonino J, McCallum RW. Gastroparesis secondary to a demyelinating disease: a case series. BMC Gastroenterol 2007; 7: 3
  • 61 Ahmed K, Lal Y. Unusual case of gastroparesis leading to severe gastromegaly with demyelinating disease as a rare cause. S D Med 2013; 66 (11) 467-469
  • 62 Lin SD, Butler JE, Boswell-Ruys CL. et al. The effect of abdominal functional electrical stimulation on bowel function in multiple sclerosis: a cohort study. Mult Scler J Exp Transl Clin 2020; 6 (03) 2055217320941530
  • 63 Singleton C, Bakheit AM, Peace C. The efficacy of functional electrical stimulation of the abdominal muscles in the treatment of chronic constipation in patients with multiple sclerosis: a pilot study. Mult Scler Int 2016; 2016: 4860315
  • 64 Chiaro G, Fratila C, Martig F, Zecca C, Gobbi C. Relapsing paralytic ileus in multiple sclerosis requiring surgery: a video case report. Clin Auton Res 2019; 29 (03) 349-351
  • 65 Waldron DJ, Horgan PG, Patel FR, Maguire R, Given HF. Multiple sclerosis: assessment of colonic and anorectal function in the presence of faecal incontinence. Int J Colorectal Dis 1993; 8 (04) 220-224
  • 66 Weber J, Grise P, Roquebert M. et al. Radiopaque markers transit and anorectal manometry in 16 patients with multiple sclerosis and urinary bladder dysfunction. Dis Colon Rectum 1987; 30 (02) 95-100
  • 67 Dandin Ö, Akpak YK, Karakaş DÖ. et al. A rare condition of anorectal dysfunction in a patient with multiple sclerosis: coexistence of faecal incontinence and mechanical constipation: report of case. Int J Surg Case Rep 2014; 5 (12) 1091-1094
  • 68 Marola S, Ferrarese A, Gibin E. et al. Anal sphincter dysfunction in multiple sclerosis: an observation manometric study. Open Med (Wars) 2016; 11 (01) 509-517
  • 69 Trivedi PM, Kumar L, Emmanuel AV. Altered colorectal compliance and anorectal physiology in upper and lower motor neurone spinal injury may explain bowel symptom pattern. Am J Gastroenterol 2016; 111 (04) 552-560
  • 70 Spear ET, Holt EA, Joyce EJ. et al. Altered gastrointestinal motility involving autoantibodies in the experimental autoimmune encephalomyelitis model of multiple sclerosis. Neurogastroenterol Motil 2018; 30 (09) e13349
  • 71 Bradl M, Reindl M, Lassmann H. Mechanisms for lesion localization in neuromyelitis optica spectrum disorders. Curr Opin Neurol 2018; 31 (03) 325-333
  • 72 Mora Cuervo DL, Hansel G, Sato DK. Immunobiology of neuromyelitis optica spectrum disorders. Curr Opin Neurobiol 2022; 76: 102618
  • 73 Ochi H, Fujihara K. Demyelinating diseases in Asia. Curr Opin Neurol 2016; 29 (03) 222-228
  • 74 Costello F. Neuromyelitis optica spectrum disorders. Continuum (Minneap Minn) 2022; 28 (04) 1131-1170
  • 75 Cree BA, Spencer CM, Varrin-Doyer M, Baranzini SE, Zamvil SS. Gut microbiome analysis in neuromyelitis optica reveals overabundance of Clostridium perfringens . Ann Neurol 2016; 80 (03) 443-447
  • 76 Shi Z, Qiu Y, Wang J. et al. Dysbiosis of gut microbiota in patients with neuromyelitis optica spectrum disorders: a cross sectional study. J Neuroimmunol 2020; 339: 577126
  • 77 Shosha E, Dubey D, Palace J. et al. Area postrema syndrome: frequency, criteria, and severity in AQP4-IgG-positive NMOSD. Neurology 2018; 91 (17) e1642-e1651
  • 78 Camara-Lemarroy CR, Burton JM. Area postrema syndrome: a short history of a pearl in demyelinating diseases. Mult Scler 2019; 25 (03) 325-329
  • 79 Wang Y, Wu A, Chen X. et al. Comparison of clinical characteristics between neuromyelitis optica spectrum disorders with and without spinal cord atrophy. BMC Neurol 2014; 14: 246
  • 80 Samart K, Phanthumchinda K. Neuromyelitis optica with hypothalamic involvement: a case report. J Med Assoc Thai 2010; 93 (04) 505-509
  • 81 Dos Passos GR, Oliveira LM, da Costa BK. et al. MOG-IgG-associated optic neuritis, encephalitis, and myelitis: lessons learned from neuromyelitis optica spectrum disorder. Front Neurol 2018; 9: 217
  • 82 Fadda G, Flanagan EP, Cacciaguerra L. et al. Myelitis features and outcomes in CNS demyelinating disorders: comparison between multiple sclerosis, MOGAD, and AQP4-IgG-positive NMOSD. Front Neurol 2022; 13: 1011579
  • 83 Li V, Malladi P, Simeoni S. et al. A clinico-neurophysiological study of urogenital dysfunction in MOG-antibody transverse myelitis. Neurology 2020; 95 (21) e2924-e2934
  • 84 Miyauchi E, Kim SW, Suda W. et al. Gut microorganisms act together to exacerbate inflammation in spinal cords. Nature 2020; 585 (7823) 102-106
  • 85 Flanagan EP, Saito YA, Lennon VA. et al. Immunotherapy trial as diagnostic test in evaluating patients with presumed autoimmune gastrointestinal dysmotility. Neurogastroenterol Motil 2014; 26 (09) 1285-1297
  • 86 Sakakibara R, Doi H, Fukudo S. Lewy body constipation. J Anus Rectum Colon 2019; 3 (01) 10-17
  • 87 Rao SS, Beaty J, Chamberlain M, Lambert PG, Gisolfi C. Effects of acute graded exercise on human colonic motility. Am J Physiol 1999; 276 (05) G1221-G1226
  • 88 Sakakibara R, Tsunoyama K, Hosoi H. et al. Influence of body position on defecation in humans. Low Urin Tract Symptoms 2010; 2 (01) 16-21
  • 89 Takano S, Sands DR. Influence of body posture on defecation: a prospective study of “The Thinker” position. Tech Coloproctol 2016; 20 (02) 117-121
  • 90 Zangaglia R, Martignoni E, Glorioso M. et al. Macrogol for the treatment of constipation in Parkinson's disease. A randomized placebo-controlled study. Mov Disord 2007; 22 (09) 1239-1244
  • 91 Sakakibara R, Yamaguchi T, Uchiyama T. et al. Calcium polycarbophil improves constipation in primary autonomic failure and multiple system atrophy subjects. Mov Disord 2007; 22 (11) 1672-1673
  • 92 Ondo WG, Kenney C, Sullivan K. et al. Placebo-controlled trial of lubiprostone for constipation associated with Parkinson disease. Neurology 2012; 78 (21) 1650-1654
  • 93 Liu Z, Sakakibara R, Odaka T. et al. Mosapride citrate, a novel 5-HT4 agonist and partial 5-HT3 antagonist, ameliorates constipation in parkinsonian patients. Mov Disord 2005; 20 (06) 680-686
  • 94 Sullivan KL, Staffetti JF, Hauser RA, Dunne PB, Zesiewicz TA. Tegaserod (Zelnorm) for the treatment of constipation in Parkinson's disease. Mov Disord 2006; 21 (01) 115-116
  • 95 Sakakibara R, Doi H, Sato M. et al. Nizatidine ameliorates slow transit constipation in Parkinson's disease. J Am Geriatr Soc 2015; 63 (02) 399-401
  • 96 Sakakibara R, Odaka T, Lui Z. et al. Dietary herb extract dai-kenchu-to ameliorates constipation in parkinsonian patients (Parkinson's disease and multiple system atrophy). Mov Disord 2005; 20 (02) 261-262
  • 97 Doi H, Sakakibara R, Sato M. et al. Dietary herb extract rikkunshi-to ameliorates gastroparesis in Parkinson's disease: a pilot study. Eur Neurol 2014; 71 (3-4): 193-195
  • 98 Cadeddu F, Bentivoglio AR, Brandara F, Marniga G, Brisinda G, Maria G. Outlet type constipation in Parkinson's disease: results of botulinum toxin treatment. Aliment Pharmacol Ther 2005; 22 (10) 997-1003