CC BY-NC-ND 4.0 · Revista Chilena de Ortopedia y Traumatología 2024; 65(01): e23-e33
DOI: 10.1055/s-0043-1777750
Artículo de Revisión | Review Article

Fracture-Related Infection – What Does the Literature Tell Us?

Article in several languages: español | English
1   Hospital el Carmen, Santiago, Chile
,
2   Hospital de Urgencia y Asistencia Pública, Santiago, Chile
,
3   Hospital Clínico de la Universidad de Chile, Santiago, Chile
4   Departamento de Traumatología y Ortopedia, Mutual de Seguridad, Santiago, Chile
› Author Affiliations
This study received no specific funding.

Resumen

La infección asociada a fracturas (IAF) es una de las complicaciones más frecuentes y desafiantes del trauma ortopédico, sin embargo, su importancia ha sido subestimada existiendo históricamente una falta de estandarización en su manejo. En los últimos años la evidencia científica disponible ha ido en aumento, y a consecuencia de ello múltiples guías clínicas y consensos de expertos han sido publicados.

El objetivo de este trabajo es proporcionar una actualización, dirigida principalmente a especialistas en Ortopedia y Traumatología, buscado estandarizar criterios diagnósticos y de tratamiento basado en evidencia científica reciente.

Abstract

Fracture-related infection (FRI) is one of the most frequent and challenging complications of orthopedic trauma; however, its importance has been underestimated. Historically, there has been a lack of standardization in its management. Nevertheless, the available scientific evidence has increased in recent years, given multiple clinical guidelines and expert consensus. This review aims to provide an update for orthopedic trauma surgeons to standardize diagnostic and treatment criteria based on recent scientific evidence.



Publication History

Received: 14 June 2022

Accepted: 27 November 2023

Article published online:
03 May 2024

© 2024. Sociedad Chilena de Ortopedia y Traumatologia. This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)

Thieme Revinter Publicações Ltda.
Rua do Matoso 170, Rio de Janeiro, RJ, CEP 20270-135, Brazil

 
  • Bibliografía

  • 1 Metsemakers WJ, Onsea J, Neutjens E. et al. Prevention of fracture-related infection: a multidisciplinary care package. Int Orthop 2017; 41 (12) 2457-2469
  • 2 Morgenstern M, Moriarty TF, Kuehl R. et al. International survey among orthopaedic trauma surgeons: Lack of a definition of fracture-related infection. Injury 2018; 49 (03) 491-496
  • 3 Berkes M, Obremskey WT, Scannell B, Ellington JK, Hymes RA, Bosse M. Southeast Fracture Consortium. Maintenance of hardware after early postoperative infection following fracture internal fixation. J Bone Joint Surg Am 2010; 92 (04) 823-828
  • 4 Tschudin-Sutter S, Frei R, Dangel M. et al. Validation of a treatment algorithm for orthopaedic implant-related infections with device-retention-results from a prospective observational cohort study. Clin Microbiol Infect 2016; 22 (05) 457.e1-457.e9
  • 5 Thakore RV, Greenberg SE, Shi H. et al. Surgical site infection in orthopedic trauma: A case-control study evaluating risk factors and cost. J Clin Orthop Trauma 2015; 6 (04) 220-226
  • 6 Darouiche RO. Treatment of infections associated with surgical implants. N Engl J Med 2004; 350 (14) 1422-1429
  • 7 Metsemakers WJ, Kortram K, Morgenstern M. et al. Definition of infection after fracture fixation: A systematic review of randomized controlled trials to evaluate current practice. Injury 2018; 49 (03) 497-504
  • 8 Metsemakers WJ, Morgenstern M, McNally MA. et al. Fracture-related infection: A consensus on definition from an international expert group. Injury 2018; 49 (03) 505-510
  • 9 Depypere M, Kuehl R, Metsemakers WJ. et al; Fracture-Related Infection (FRI) Consensus Group. Recommendations for Systemic Antimicrobial Therapy in Fracture-Related Infection: A Consensus From an International Expert Group. J Orthop Trauma 2020; 34 (01) 30-41
  • 10 Metsemakers WJ, Fragomen AT, Moriarty TF. et al; Fracture-Related Infection (FRI) consensus group. Evidence-Based Recommendations for Local Antimicrobial Strategies and Dead Space Management in Fracture-Related Infection. J Orthop Trauma 2020; 34 (01) 18-29
  • 11 Govaert GAM, Kuehl R, Atkins BL. et al; Fracture-Related Infection (FRI) Consensus Group. Diagnosing Fracture-Related Infection: Current Concepts and Recommendations. J Orthop Trauma 2020; 34 (01) 8-17
  • 12 Metsemakers WJ, Morgenstern M, Senneville E. et al; Fracture-Related Infection (FRI) group. General treatment principles for fracture-related infection: recommendations from an international expert group. Arch Orthop Trauma Surg 2020; 140 (08) 1013-1027
  • 13 Cats-Baril W, Gehrke T, Huff K, Kendoff D, Maltenfort M, Parvizi J. International consensus on periprosthetic joint infection: description of the consensus process. Clin Orthop Relat Res 2013; 471 (12) 4065-4075
  • 14 Kleber C, Schaser KD, Trampuz A. [Complication management of infected osteosynthesis: Therapy algorithm for peri-implant infections]. Chir Z Alle Geb Oper Medizen 2015; 86 (10) 925-934
  • 15 Patzakis MJ, Zalavras CG. Chronic posttraumatic osteomyelitis and infected nonunion of the tibia: current management concepts. J Am Acad Orthop Surg 2005; 13 (06) 417-427
  • 16 Bonnevialle P, Bonnomet F, Philippe R. et al; SOFCOT. Early surgical site infection in adult appendicular skeleton trauma surgery: a multicenter prospective series. Orthop Traumatol Surg Res 2012; 98 (06) 684-689
  • 17 Bezstarosti H, Van Lieshout EMM, Voskamp LW. et al. Insights into treatment and outcome of fracture-related infection: a systematic literature review. Arch Orthop Trauma Surg 2019; 139 (01) 61-72
  • 18 Onsea J, Van Lieshout EMM, Zalavras C. et al. Validation of the diagnostic criteria of the consensus definition of fracture-related infection. Injury 2022; 53 (06) 1867-1879
  • 19 Tiemann AH, Hofmann GO. Principles of the therapy of bone infections in adult extremities : Are there any new developments?. Strateg Trauma Limb Reconstr 2009; 4 (02) 57-64
  • 20 Omar M, Suero EM, Liodakis E. et al. Diagnostic performance of swab PCR as an alternative to tissue culture methods for diagnosing infections associated with fracture fixation devices. Injury 2016; 47 (07) 1421-1426
  • 21 van den Kieboom J, Bosch P, Plate JDJ. et al. Diagnostic accuracy of serum inflammatory markers in late fracture-related infection: a systematic review and meta-analysis. Bone Joint J 2018; 100-B (12) 1542-1550
  • 22 Govaert GA, IJpma FF, McNally M, McNally E, Reininga IH, Glaudemans AW. Accuracy of diagnostic imaging modalities for peripheral post-traumatic osteomyelitis - a systematic review of the recent literature. Eur J Nucl Med Mol Imaging 2017; 44 (08) 1393-1407
  • 23 Goebel M, Rosa F, Tatsch K, Grillhoesl A, Hofmann GO, Kirschner MH. [Diagnosis of chronic osteitis of the bones in the extremities. Relative value of F-18 FDG-PET]. Unfallchirurg 2007; 110 (10) 859-866
  • 24 Kaim A, Ledermann HP, Bongartz G, Messmer P, Müller-Brand J, Steinbrich W. Chronic post-traumatic osteomyelitis of the lower extremity: comparison of magnetic resonance imaging and combined bone scintigraphy/immunoscintigraphy with radiolabelled monoclonal antigranulocyte antibodies. Skeletal Radiol 2000; 29 (07) 378-386
  • 25 Ballani NS, Al-Huda FA, Khan HA, Al-Mohannadi S, Mahmood H, Al-Enezi F. The value of quantitative uptake of (99m)Tc-MDP and (99m)Tc-HMPAO white blood cells in detecting osteomyelitis in violated peripheral bones. J Nucl Med Technol 2007; 35 (02) 91-95
  • 26 Meller J, Köster G, Liersch T. et al. Chronic bacterial osteomyelitis: prospective comparison of (18)F-FDG imaging with a dual-head coincidence camera and (111)In-labelled autologous leucocyte scintigraphy. Eur J Nucl Med Mol Imaging 2002; 29 (01) 53-60
  • 27 Glaudemans AWJM, de Vries EFJ, Vermeulen LEM, Slart RHJA, Dierckx RAJO, Signore A. A large retrospective single-centre study to define the best image acquisition protocols and interpretation criteria for white blood cell scintigraphy with 99mTc-HMPAO-labelled leucocytes in musculoskeletal infections. Eur J Nucl Med Mol Imaging 2013; 40 (11) 1760-1769
  • 28 Govaert GAM, Bosch P, IJpma FFA. et al. High diagnostic accuracy of white blood cell scintigraphy for fracture related infections: Results of a large retrospective single-center study. Injury 2018; 49 (06) 1085-1090
  • 29 Lemans JVC, Hobbelink MGG, IJpma FFA. et al. The diagnostic accuracy of 18F-FDG PET/CT in diagnosing fracture-related infections. Eur J Nucl Med Mol Imaging 2019; 46 (04) 999-1008
  • 30 Schwotzer N, Wahl P, Fracheboud D, Gautier E, Chuard C. Optimal culture incubation time in orthopedic device-associated infections: a retrospective analysis of prolonged 14-day incubation. J Clin Microbiol 2014; 52 (01) 61-66
  • 31 Firoozabadi R, Alton T, Wenke J. Novel Strategies for the Diagnosis of Posttraumatic Infections in Orthopaedic Trauma Patients. J Am Acad Orthop Surg 2015; 23 (07) 443-451
  • 32 Greene LR. Guide to the elimination of orthopedic surgery surgical site infections: an executive summary of the Association for Professionals in Infection Control and Epidemiology elimination guide. Am J Infect Control 2012; 40 (04) 384-386
  • 33 Myers WT, Leong M, Phillips LG. Optimizing the patient for surgical treatment of the wound. Clin Plast Surg 2007; 34 (04) 607-620
  • 34 Underwood P, Askari R, Hurwitz S, Chamarthi B, Garg R. Preoperative A1C and clinical outcomes in patients with diabetes undergoing major noncardiac surgical procedures. Diabetes Care 2014; 37 (03) 611-616
  • 35 Ernst A, Wilson JM, Ahn J, Shapiro M, Schenker ML. Malnutrition and the Orthopaedic Trauma Patient: A Systematic Review of the Literature. J Orthop Trauma 2018; 32 (10) 491-499
  • 36 Duggan EW, Carlson K, Umpierrez GE. Perioperative Hyperglycemia Management: An Update. Anesthesiology 2017; 126 (03) 547-560
  • 37 Allegranzi B, Zayed B, Bischoff P. et al; WHO Guidelines Development Group. New WHO recommendations on intraoperative and postoperative measures for surgical site infection prevention: an evidence-based global perspective. Lancet Infect Dis 2016; 16 (12) e288-e303
  • 38 Haines N, Kempton LB, Seymour RB. et al. The effect of a single early high-dose vitamin D supplement on fracture union in patients with hypovitaminosis D: a prospective randomised trial. Bone Joint J 2017; 99-B (11) 1520-1525
  • 39 Zargaran A, Zargaran D, Trompeter AJ. The role of Vitamin D in orthopaedic infection: a systematic literature review. Bone Jt Open 2021; 2 (09) 721-727
  • 40 Mah TF, O'Toole GA. Mechanisms of biofilm resistance to antimicrobial agents. Trends Microbiol 2001; 9 (01) 34-39
  • 41 Metsemakers WJ, Kuehl R, Moriarty TF. et al. Infection after fracture fixation: Current surgical and microbiological concepts. Injury 2018; 49 (03) 511-522
  • 42 Rittmann WW, Perren SM, Furnas DW. CORTICAL BONE HEALING AFTER INTERNAL FIXATION AND INFECTION. Plast Reconstr Surg 1976; 57 (01) 91
  • 43 Worlock P, Slack R, Harvey L, Mawhinney R. The prevention of infection in open fractures: an experimental study of the effect of fracture stability. Injury 1994; 25 (01) 31-38
  • 44 Schmidt AH, Swiontkowski MF. Pathophysiology of infections after internal fixation of fractures. J Am Acad Orthop Surg 2000; 8 (05) 285-291
  • 45 Foster AL, Moriarty TF, Zalavras C. et al. The influence of biomechanical stability on bone healing and fracture-related infection: the legacy of Stephan Perren. Injury 2021; 52 (01) 43-52
  • 46 Morgenstern M, Kuehl R, Zalavras CG. et al. The influence of duration of infection on outcome of debridement and implant retention in fracture-related infection. Bone Joint J 2021; 103-B (02) 213-221
  • 47 Bhandari M, Jeray KJ, Petrisor BA. et al; FLOW Investigators. A Trial of Wound Irrigation in the Initial Management of Open Fracture Wounds. N Engl J Med 2015; 373 (27) 2629-2641
  • 48 Penn-Barwell JG, Murray CK, Wenke JC. Comparison of the antimicrobial effect of chlorhexidine and saline for irrigating a contaminated open fracture model. J Orthop Trauma 2012; 26 (12) 728-732
  • 49 O'Donnell JA, Wu M, Cochrane NH. et al. Efficacy of common antiseptic solutions against clinically relevant microorganisms in biofilm. Bone Joint J 2021; 103-B (05) 908-915
  • 50 Markel JF, Bou-Akl T, Dietz P, Afsari AM. The Effect of Different Irrigation Solutions on the Cytotoxicity and Recovery Potential of Human Osteoblast Cells In Vitro. Arthroplast Today 2021; 7: 120-125
  • 51 Böhle S, Röhner E, Zippelius T, Jacob B, Matziolis G, Rohe S. Cytotoxic effect of sodium hypochlorite (Lavanox 0.08%) and chlorhexidine gluconate (Irrisept 0.05%) on human osteoblasts. Eur J Orthop Surg Traumatol Orthop Traumatol 2021
  • 52 Zalavras CG. Prevention of Infection in Open Fractures. Infect Dis Clin North Am 2017; 31 (02) 339-352
  • 53 Schemitsch EH. Size Matters: Defining Critical in Bone Defect Size!. J Orthop Trauma 2017; 31 (Suppl 5): S20-S22
  • 54 Giannoudis PV, Tosounidis TH. Acute and chronic infection: Is there a gold standard for management of the wound and bone defect?. OTA Int 2020; 3 (01) e068
  • 55 Morgenstern M, Vallejo A, McNally MA. et al. The effect of local antibiotic prophylaxis when treating open limb fractures: A systematic review and meta-analysis. Bone Joint Res 2018; 7 (07) 447-456
  • 56 ter Boo GJA, Grijpma DW, Moriarty TF, Richards RG, Eglin D. Antimicrobial delivery systems for local infection prophylaxis in orthopedic- and trauma surgery. Biomaterials 2015; 52: 113-125
  • 57 Aurégan JC, Bégué T. Bioactive glass for long bone infection: a systematic review. Injury 2015; 46 (Suppl 8): S3-S7
  • 58 Kojima KE, de Andrade E Silva FB, Leonhardt MC. et al. Bioactive glass S53P4 to fill-up large cavitary bone defect after acute and chronic osteomyelitis treated with antibiotic-loaded cement beads: A prospective case series with a minimum 2-year follow-up. Injury 2021; 52 (Suppl 3): S23-S28
  • 59 Li HK, Rombach I, Zambellas R. et al; OVIVA Trial Collaborators. Oral versus Intravenous Antibiotics for Bone and Joint Infection. N Engl J Med 2019; 380 (05) 425-436
  • 60 Fassbender M, Minkwitz S, Kronbach Z. et al. Local gentamicin application does not interfere with bone healing in a rat model. Bone 2013; 55 (02) 298-304
  • 61 Zimmerli W, Widmer AF, Blatter M, Frei R, Ochsner PE. Foreign-Body Infection (FBI) Study Group. Role of rifampin for treatment of orthopedic implant-related staphylococcal infections: a randomized controlled trial. JAMA 1998; 279 (19) 1537-1541
  • 62 El Helou OC, Berbari EF, Lahr BD. et al. Efficacy and safety of rifampin containing regimen for staphylococcal prosthetic joint infections treated with debridement and retention. Eur J Clin Microbiol Infect Dis 2010; 29 (08) 961-967
  • 63 Aboltins CA, Dowsey MM, Buising KL. et al. Gram-negative prosthetic joint infection treated with debridement, prosthesis retention and antibiotic regimens including a fluoroquinolone. Clin Microbiol Infect 2011; 17 (06) 862-867
  • 64 Martínez-Pastor JC, Muñoz-Mahamud E, Vilchez F. et al. Outcome of acute prosthetic joint infections due to gram-negative bacilli treated with open debridement and retention of the prosthesis. Antimicrob Agents Chemother 2009; 53 (11) 4772-4777
  • 65 Sendi P, Zimmerli W. Antimicrobial treatment concepts for orthopaedic device-related infection. Clin Microbiol Infect 2012; 18 (12) 1176-1184
  • 66 Achermann Y, Eigenmann K, Ledergerber B. et al. Factors associated with rifampin resistance in staphylococcal periprosthetic joint infections (PJI): a matched case-control study. Infection 2013; 41 (02) 431-437
  • 67 Senneville E, Joulie D, Legout L. et al. Outcome and predictors of treatment failure in total hip/knee prosthetic joint infections due to Staphylococcus aureus. Clin Infect Dis 2011; 53 (04) 334-340
  • 68 Zimmerli W, Trampuz A, Ochsner PE. Prosthetic-joint infections. N Engl J Med 2004; 351 (16) 1645-1654
  • 69 Morgenstern M, Athanasou NA, Ferguson JY, Metsemakers WJ, Atkins BL, McNally MA. The value of quantitative histology in the diagnosis of fracture-related infection. Bone Joint J 2018; 100-B (07) 966-972
  • 70 Sheehy SH, Atkins BA, Bejon P. et al. The microbiology of chronic osteomyelitis: prevalence of resistance to common empirical anti-microbial regimens. J Infect 2010; 60 (05) 338-343
  • 71 Kuehl R, Tschudin-Sutter S, Morgenstern M. et al. Time-dependent differences in management and microbiology of orthopaedic internal fixation-associated infections: an observational prospective study with 229 patients. Clin Microbiol Infect 2019; 25 (01) 76-81
  • 72 Gille J, Wallstabe S, Schulz AP, Paech A, Gerlach U. Is non-union of tibial shaft fractures due to nonculturable bacterial pathogens? A clinical investigation using PCR and culture techniques. J Orthop Surg Res 2012; 7: 20
  • 73 Palmer MP, Altman DT, Altman GT. et al. Can we trust intraoperative culture results in nonunions?. J Orthop Trauma 2014; 28 (07) 384-390
  • 74 Samara E, Moriarty TF, Decosterd LA, Richards RG, Gautier E, Wahl P. Antibiotic stability over six weeks in aqueous solution at body temperature with and without heat treatment that mimics the curing of bone cement. Bone Joint Res 2017; 6 (05) 296-306
  • 75 Rathbone CR, Cross JD, Brown KV, Murray CK, Wenke JC. Effect of various concentrations of antibiotics on osteogenic cell viability and activity. J Orthop Res 2011; 29 (07) 1070-1074
  • 76 Holtom PD, Pavkovic SA, Bravos PD, Patzakis MJ, Shepherd LE, Frenkel B. Inhibitory effects of the quinolone antibiotics trovafloxacin, ciprofloxacin, and levofloxacin on osteoblastic cells in vitro. J Orthop Res 2000; 18 (05) 721-727
  • 77 O'Toole RV, Joshi M, Carlini AR. et al; Major Extremity Trauma Research Consortium (METRC). Effect of Intrawound Vancomycin Powder in Operatively Treated High-risk Tibia Fractures: A Randomized Clinical Trial. JAMA Surg 2021; 156 (05) e207259 Disponible en: https://pubmed.ncbi.nlm.nih.gov/33760010/
  • 78 O'Toole RV, Degani Y, Carlini AR, Castillo RC, O'Hara NN, Joshi M. and METRC. Systemic Absorption and Nephrotoxicity Associated With Topical Vancomycin Powder for Fracture Surgery. J Orthop Trauma 2021; 35 (01) 29-34
  • 79 Springer BD, Lee GC, Osmon D, Haidukewych GJ, Hanssen AD, Jacofsky DJ. Systemic safety of high-dose antibiotic-loaded cement spacers after resection of an infected total knee arthroplasty. Clin Orthop Relat Res 2004; (427) 47-51
  • 80 Antoci Jr V, Adams CS, Hickok NJ, Shapiro IM, Parvizi J. Antibiotics for local delivery systems cause skeletal cell toxicity in vitro. Clin Orthop Relat Res 2007; 462 (462) 200-206
  • 81 van Raaij TM, Visser LE, Vulto AG, Verhaar JAN. Acute renal failure after local gentamicin treatment in an infected total knee arthroplasty. J Arthroplasty 2002; 17 (07) 948-950
  • 82 Tubaki VR, Rajasekaran S, Shetty AP. Effects of using intravenous antibiotic only versus local intrawound vancomycin antibiotic powder application in addition to intravenous antibiotics on postoperative infection in spine surgery in 907 patients. Spine 2013; 38 (25) 2149-2155
  • 83 Adogwa O, Elsamadicy AA, Sergesketter A. et al. Prophylactic use of intraoperative vancomycin powder and postoperative infection: an analysis of microbiological patterns in 1200 consecutive surgical cases. J Neurosurg Spine 2017; 27 (03) 328-334
  • 84 Ghobrial GM, Thakkar V, Andrews E. et al. Intraoperative vancomycin use in spinal surgery: single institution experience and microbial trends. Spine 2014; 39 (07) 550-555