CC BY-NC-ND 4.0 · Revista Chilena de Ortopedia y Traumatología 2023; 64(03): e150-e156
DOI: 10.1055/s-0043-1777826
Reporte de un caso | Case Report

Update on Treatment of Trochlear Chondral Lesions Based on a Clinical Case

Article in several languages: español | English
David Figueroa Poblete
1   Departamento de Traumatología, Facultad de Medicina, Clínica Alemana de Santiago, Universidad del Desarrollo, Chile
,
Juan Pablo Riquelme Bello
2   Departamento de Traumatología, Hospital Doctor Mauricio Heyermann de Angol, Araucanía, Chile
3   Facultad de Medicina, Universidad Mayor de Temuco, Temuco, Chile
,
1   Departamento de Traumatología, Facultad de Medicina, Clínica Alemana de Santiago, Universidad del Desarrollo, Chile
,
Rafael Calvo Rodriguez
1   Departamento de Traumatología, Facultad de Medicina, Clínica Alemana de Santiago, Universidad del Desarrollo, Chile
› Author Affiliations

Abstract

The management of osteochondral lesions of the femoral trochlea is complex and controversial. Treatment options include the microfracture technique, which is widely used and presents good short-term outcomes despite evident long-term deterioration. As a result, different augmentation techniques have been developed to favor a better quality of the new fibrocartilage to improve medium- and long-term outcomes.

This case report presents a 44-year-old patient with an osteochondral lesion of the femoral trochlea managed with a combined microfracture and augmentation technique with a cartilage allograft matrix, with good clinical and image outcomes at an 18-month follow-up. Next, we show an updated review of the literature regarding this topic.



Publication History

Received: 28 July 2023

Accepted: 30 November 2023

Article published online:
26 December 2023

© 2023. Sociedad Chilena de Ortopedia y Traumatologia. This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)

Thieme Revinter Publicações Ltda.
Rua do Matoso 170, Rio de Janeiro, RJ, CEP 20270-135, Brazil

 
  • Bibliografía

  • 1 Krych AJ, Saris DBF, Stuart MJ, Hacken B. Cartilage Injury in the Knee: Assessment and Treatment Options. J Am Acad Orthop Surg 2020; 28 (22) 914-922
  • 2 Hjelle K, Solheim E, Strand T, Muri R, Brittberg M. Articular cartilage defects in 1,000 knee arthroscopies. Arthroscopy 2002; 18 (07) 730-734
  • 3 Widuchowski W, Widuchowski J, Trzaska T. Articular cartilage defects: study of 25,124 knee arthroscopies. Knee 2007; 14 (03) 177-182
  • 4 Arøen A, Løken S, Heir S. et al. Articular cartilage lesions in 993 consecutive knee arthroscopies. Am J Sports Med 2004; 32 (01) 211-215 http://journals.sagepub.com/doi/10.1177/0363546503259345
  • 5 Hinckel BB, Gomoll AH. Patellofemoral Cartilage Restoration: Indications, Techniques, and Outcomes of Autologous Chondrocytes Implantation, Matrix-Induced Chondrocyte Implantation, and Particulated Juvenile Allograft Cartilage. J Knee Surg 2018; 31 (03) 212-226 http://www.thieme-connect.de/DOI/DOI?10.1055/s-0037-1607294
  • 6 Yanke AB, Wuerz T, Saltzman BM, Butty D, Cole BJ. Management of patellofemoral chondral injuries. Clin Sports Med 2014; 33 (03) 477-500 https://linkinghub.elsevier.com/retrieve/pii/S0278591914000210
  • 7 Redondo ML, Beer AJ, Yanke AB. Cartilage Restoration: Microfracture and Osteochondral Autograft Transplantation. J Knee Surg 2018; 31 (03) 231-238 http://www.thieme-connect.de/DOI/DOI?10.1055/s-0037-1618592
  • 8 Sheppard WL, Hinckel BB, Arshi A, Sherman SL, Jones KJ. Accurate Reporting of Concomitant Procedures Is Highly Variable in Studies Investigating Knee Cartilage Restoration. Cartilage 2021; 12 (03) 333-343 http://journals.sagepub.com/doi/10.1177/1947603519841673
  • 9 Brusalis CM, Greditzer IV HG, Fabricant PD, Stannard JP, Cook JL. BioCartilage augmentation of marrow stimulation procedures for cartilage defects of the knee: Two-year clinical outcomes. Knee 2020; 27 (05) 1418-1425 DOI: 10.1016/j.knee.2020.07.087.
  • 10 Fortier LA, Chapman HS, Pownder SL. et al. BioCartilage improves cartilage repair compared with microfracture alone in an equine model of full-thickness cartilage loss. Am J Sports Med 2016; 44 (09) 2366-2374
  • 11 Cole BJ, Haunschild ED, Carter T, Meyer J, Fortier LA, Gilat R. BC (BioCartilage) Study Group. Clinically Significant Outcomes Following the Treatment of Focal Cartilage Defects of the Knee With Microfracture Augmentation Using Cartilage Allograft Extracellular Matrix: A Multicenter Prospective Study. Arthroscopy 2021; 37 (05) 1512-1521 DOI: 10.1016/j.arthro.2021.01.043.
  • 12 Calvo R, Figueroa D, Figueroa F, Bravo J, Contreras M, Zilleruelo N. Treatment of Patellofemoral Chondral Lesions Using Microfractures Associated with a Chitosan Scaffold: Mid-Term Clinical and Radiological Results. Cartilage 2021; 13 (1_suppl): 1258S-1264S
  • 13 Sofu H, Camurcu Y, Ucpunar H, Ozcan S, Yurten H, Sahin V. Clinical and radiographic outcomes of chitosan-glycerol phosphate/blood implant are similar with hyaluronic acid-based cell-free scaffold in the treatment of focal osteochondral lesions of the knee joint. Knee Surg Sports Traumatol Arthrosc 2019; 27 (03) 773-781 DOI: 10.1007/s00167-018-5079-z.
  • 14 Shive MS, Stanish WD, McCormack R. et al. BST-CarGel® Treatment Maintains Cartilage Repair Superiority over Microfracture at 5 Years in a Multicenter Randomized Controlled Trial. Cartilage 2015; 6 (02) 62-72
  • 15 Steadman J, Rodkey W, Singleton S, Briggs K. Microfracture technique for full-thickness chondral defects: technique and clinical results. Oper Tech Orthop 1997; 7: 300-304
  • 16 Axhausen G. Die Entstehung der Freien Gelenkkorper and Ihre Beziehungen. Arch F Klin Chir. 1912; 104: 581-678
  • 17 Kaplan LD, Schurhoff MR, Selesnick H, Thorpe M, Uribe JW. Magnetic resonance imaging of the knee in asymptomatic professional basketball players. Arthroscopy 2005; 21 (05) 557-561
  • 18 Walczak BE, McCulloch PC, Kang RW, Zelazny A, Tedeschi F, Cole BJ. Abnormal findings on knee magnetic resonance imaging in asymptomatic NBA players. J Knee Surg 2008; 21 (01) 27-33
  • 19 Harilainen A, Lindroos M, Sandelin J, Tallroth K, Kujala UM. Patellofemoral relationships and cartilage breakdown. Knee Surg Sports Traumatol Arthrosc 2005; 13 (02) 142-144
  • 20 Luessenhop S, Behrens P, Bruns J, Rehder U. Bilateral osteochondritis dissecans of the medial trochlea femoris: an unusual case of patellofemoral pain. Knee Surg Sports Traumatol Arthrosc 1993; 1 (3-4): 187-188
  • 21 Mori Y, Kubo M, Shimokoube J, Kuroki Y. Osteochondritis dissecans of the patellofemoral groove in athletes: unusual cases of patellofemoral pain. Knee Surg Sports Traumatol Arthrosc 1994; 2 (04) 242-244
  • 22 Smith JB. Osteochondritis dissecans of the trochlea of the femur. Arthroscopy 1990; 6 (01) 11-17
  • 23 Huberti HH, Hayes WC. Patellofemoral contact pressures. The influence of q-angle and tendofemoral contact. J Bone Joint Surg Am 1984; 66 (05) 715-724
  • 24 Huegli RW, Moelleken SMC, Stork A. et al. MR imaging of post-traumatic articular cartilage injuries confined to the femoral trochlea. Arthroscopic correlation and clinical significance. Eur J Radiol 2005; 53 (01) 90-95
  • 25 Muhle C, Ahn JM, Trudell D, Resnick D. Magnetic resonance imaging of the femoral trochlea: evaluation of anatomical landmarks and grading articular cartilage in cadaveric knees. Skeletal Radiol 2008; 37 (06) 527-533
  • 26 Gallo RA, Feeley BT. Cartilage defects of the femoral trochlea. Knee Surg Sports Traumatol Arthrosc 2009; 17 (11) 1316-1325
  • 27 Kreuz PC, Erggelet C, Steinwachs MR. et al. Is microfracture of chondral defects in the knee associated with different results in patients aged 40 years or younger?. Arthroscopy 2006; 22 (11) 1180-1186
  • 28 Kreuz PC, Steinwachs MR, Erggelet C. et al. Results after microfracture of full-thickness chondral defects in different compartments in the knee. Osteoarthritis Cartilage 2006; 14 (11) 1119-1125
  • 29 Farr J, Tabet SK, Margerrison E, Cole BJ. Clinical, radiographic, and histological outcomes after cartilage repair with particulated juvenile articular cartilage: A 2-year prospective study. Am J Sports Med 2014; 42 (06) 1417-1425
  • 30 Kraeutler MJ, Aliberti GM, Scillia AJ, McCarty EC, Mulcahey MK. Microfracture Versus Drilling of Articular Cartilage Defects: A Systematic Review of the Basic Science Evidence. Orthop J Sports Med 2020; 8 (08) 2325967120945313 DOI: 10.1177/2325967120945313.
  • 31 Zedde P, Cudoni S, Giachetti G. et al. Subchondral bone remodeling: comparing nanofracture with microfracture. An ovine in vivo study. Joints 2016; 4 (02) 87-93 DOI: 10.11138/jts/2016.4.2.087.
  • 32 Talesa G, Manfreda F, Pace V. et al. The treatment of knee cartilage lesions: state of the art. Acta Biomed 2022; 93 (04) e2022099 http://www.ncbi.nlm.nih.gov/pubmed/36043984
  • 33 Peñalver JM, Villalba J, Yela-Verdú CP, Sánchez J, Balaguer-Castro M. All-Arthroscopic Nanofractured Autologous Matrix-Induced Chondrogenesis (A-NAMIC) Technique for the Treatment of Focal Chondral Lesions of the Knee. Arthrosc Tech 2020; 9 (06) e755-e759 https://linkinghub.elsevier.com/retrieve/pii/S2212628720300414
  • 34 Federico DJ, Reider B. Results of isolated patellar debridement for patellofemoral pain in patients with normal patellar alignment. Am J Sports Med 1997; 25 (05) 663-669
  • 35 Schonholtz GJ, Ling B. Arthroscopic chondroplasty of the patella. Arthroscopy 1985; 1 (02) 92-96
  • 36 Williams III RJ, Ranawat AS, Potter HG, Carter T, Warren RF. Fresh stored allografts for the treatment of osteochondral defects of the knee. J Bone Joint Surg Am 2007; 89 (04) 718-726
  • 37 Ahmad CS, Cohen ZA, Levine WN, Ateshian GA, Mow VC. Biomechanical and topographic considerations for autologous osteochondral grafting in the knee. Am J Sports Med 2001; 29 (02) 201-206
  • 38 Melugin HP, Ridley TJ, Bernard CD. et al. Prospective Outcomes of Cryopreserved Osteochondral Allograft for Patellofemoral Cartilage Defects at Minimum 2-Year Follow-up. Cartilage 2021; 13 (1_suppl) 1014S-1021S
  • 39 Mithöfer K, Minas T, Peterson L, Yeon H, Micheli LJ. Functional outcome of knee articular cartilage repair in adolescent athletes. Am J Sports Med 2005; 33 (08) 1147-1153
  • 40 Mainil-Varlet P, Rieser F, Grogan S, Mueller W, Saager C, Jakob RP. Articular cartilage repair using a tissue-engineered cartilage-like implant: an animal study. Osteoarthritis Cartilage 2001; 9 (Suppl A): S6-S15
  • 41 Krishnan SP, Skinner JA, Bartlett W. et al. Who is the ideal candidate for autologous chondrocyte implantation?. J Bone Joint Surg Br 2006; 88 (01) 61-64
  • 42 Henderson IJP, La Valette DP. Subchondral bone overgrowth in the presence of full-thickness cartilage defects in the knee. Knee 2005; 12 (06) 435-440
  • 43 Fulkerson JP, Becker GJ, Meaney JA, Miranda M, Folcik MA. Anteromedial tibial tubercle transfer without bone graft. Am J Sports Med 1990; 18 (05) 490-496 , discussion 496–497
  • 44 Beck PR, Thomas AL, Farr J, Lewis PB, Cole BJ. Trochlear contact pressures after anteromedialization of the tibial tubercle. Am J Sports Med 2005; 33 (11) 1710-1715
  • 45 Rue JPH, Colton A, Zare SM. et al. Trochlear contact pressures after straight anteriorization of the tibial tuberosity. Am J Sports Med 2008; 36 (10) 1953-1959
  • 46 Farr J. Autologous chondrocyte implantation improves patellofemoral cartilage treatment outcomes. Clin Orthop Relat Res 2007; 463 (463) 187-194