Semin Musculoskelet Radiol 2024; 28(02): 203-212
DOI: 10.1055/s-0043-1778019
Review Article

The Future of Artificial Intelligence in Sports Medicine and Return to Play

Vishal Desai
1   Department of Radiology, Thomas Jefferson University, Philadelphia, Pennsylvania
› Institutsangaben


Artificial intelligence (AI) has shown tremendous growth over the last decade, with the more recent development of clinical applications in health care. The ability of AI to synthesize large amounts of complex data automatically allows health care providers to access previously unavailable metrics and thus enhance and personalize patient care. These innovations include AI-assisted diagnostic tools, prediction models for each treatment pathway, and various tools for workflow optimization. The extension of AI into sports medicine is still early, but numerous AI-driven algorithms, devices, and research initiatives have delved into predicting and preventing athlete injury, aiding in injury assessment, optimizing recovery plans, monitoring rehabilitation progress, and predicting return to play.


Artikel online veröffentlicht:
14. März 2024

© 2024. Thieme. All rights reserved.

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

  • References

  • 1 Hosny A, Parmar C, Quackenbush J, Schwartz LH, Aerts HJWL. Artificial intelligence in radiology. Nat Rev Cancer 2018; 18 (08) 500-510
  • 2 Bohr A, Memarzadeh K. The rise of artificial intelligence in healthcare applications. Available at: Accessed December 3, 2023
  • 3 Johnson KB, Wei WQ, Weeraratne D. et al. Precision medicine, AI, and the future of personalized health care. Clin Transl Sci 2021; 14 (01) 86-93
  • 4 Thomas LB, Mastorides SM, Viswanadhan NA, Jakey CE, Borkowski AA. Artificial intelligence: review of current and future applications in medicine. Fed Pract 2021; 38 (11) 527-538
  • 5 Ramkumar PN, Luu BC, Haeberle HS, Karnuta JM, Nwachukwu BU, Williams RJ. Sports medicine and artificial intelligence: a primer. Am J Sports Med 2022; 50 (04) 1166-1174
  • 6 Chidambaram S, Maheswaran Y, Patel K. et al. Using artificial intelligence-enhanced sensing and wearable technology in sports medicine and performance optimisation. Sensors (Basel) 2022; 22 (18) 6920
  • 7 Wiley TJ, Lemme NJ, Marcaccio S. et al. Return to play following meniscal repair. Clin Sports Med 2020; 39 (01) 185-196
  • 8 Miller BS, Downie BK, Johnson PD. et al. Time to return to play after high ankle sprains in collegiate football players: a prediction model. Sports Health 2012; 4 (06) 504-509
  • 9 Allen JH, Tang AR, Hajdu KS. et al. Predicting early versus late recovery from sport-related concussion using decision tree analysis. J Neurosurg Pediatr 2023; 32 (01) 9-18
  • 10 Luu BC, Wright AL, Haeberle HS. et al. Machine learning outperforms logistic regression analysis to predict next-season NHL player injury: an analysis of 2322 players from 2007 to 2017. Orthop J Sports Med 2020; 8 (09) 2325967120953404
  • 11 Karnuta JM, Luu BC, Haeberle HS. et al. Machine learning outperforms regression analysis to predict next-season Major League Baseball player injuries: epidemiology and validation of 13,982 player-years from performance and injury profile trends, 2000-2017. Orthop J Sports Med 2020; 8 (11) 2325967120963046
  • 12 Haller N, Kranzinger S, Kranzinger C. et al. Predicting injury and illness with machine learning in elite youth soccer: a comprehensive monitoring approach over 3 months. J Sports Sci Med 2023; 22 (03) 476-487
  • 13 Rommers N, Rössler R, Verhagen E. et al. A machine learning approach to assess injury risk in elite youth football players. Med Sci Sports Exerc 2020; 52 (08) 1745-1751
  • 14 Rossi A, Pappalardo L, Cintia P, Iaia FM, Fernández J, Medina D. Effective injury forecasting in soccer with GPS training data and machine learning. PLoS One 2018; 13 (07) e0201264
  • 15 Topff L, Ranschaert ER, Bartels-Rutten A. et al. Artificial intelligence tool for detection and worklist prioritization reduces time to diagnosis of incidental pulmonary embolism at CT. Radiol Cardiothorac Imaging 2023; 5 (02) e220163
  • 16 Liu F, Guan B, Zhou Z. et al. Fully automated diagnosis of anterior cruciate ligament tears on knee MR images by using deep learning. Radiol Artif Intell 2019; 1 (03) 180091
  • 17 Shin H, Choi GS, Shon OJ, Kim GB, Chang MC. Development of convolutional neural network model for diagnosing meniscus tear using magnetic resonance image. BMC Musculoskelet Disord 2022; 23 (01) 510
  • 18 Ni M, Gao L, Chen W. et al. Preliminary exploration of deep learning-assisted recognition of superior labrum anterior and posterior lesions in shoulder MR arthrography. Available at Accessed December 3, 2023
  • 19 Astuto B, Flament I. K Namiri N, et al. Automatic deep learning-assisted detection and grading of abnormalities in knee MRI studies. Radiol Artif Intell 2021; 3 (03) e200165
  • 20 Lin DJ, Schwier M, Geiger B. et al. Deep learning diagnosis and classification of rotator cuff tears on shoulder MRI. Invest Radiol 2023; 58 (06) 405-412
  • 21 Ni M, Wen X, Chen W. et al. A deep learning approach for MRI in the diagnosis of labral injuries of the hip joint. J Magn Reson Imaging 2022; 56 (02) 625-634
  • 22 Taghizadeh E, Truffer O, Becce F. et al. Deep learning for the rapid automatic quantification and characterization of rotator cuff muscle degeneration from shoulder CT datasets. Eur Radiol 2021; 31 (01) 181-190
  • 23 Yang M, Colak C, Chundru KK. et al. Automated knee cartilage segmentation for heterogeneous clinical MRI using generative adversarial networks with transfer learning. Quant Imaging Med Surg 2022; 12 (05) 2620-2633
  • 24 Agosti A, Shaqiri E, Paoletti M. et al. Deep learning for automatic segmentation of thigh and leg muscles. Magn Reson Mater Biol Phys Med 2022; 35 (03) 467-483
  • 25 Zibetti MVW, Menon RG, de Moura HL, Zhang X, Kijowski R, Regatte RR. Updates on compositional MRI mapping of the cartilage: emerging techniques and applications. J Magn Reson Imaging 2023; 58 (01) 44-60
  • 26 Ding J, Cao P, Chang HC, Gao Y, Chan SHS, Vardhanabhuti V. Deep learning-based thigh muscle segmentation for reproducible fat fraction quantification using fat-water decomposition MRI. Insights Imaging 2020; 11 (01) 128
  • 27 Torres-Velázquez M, Wille CM, Hurley SA, Kijowski R, Heiderscheit BC, McMillan AB. MRI radiomics for hamstring strain injury identification and return to sport classification: a pilot study. Skeletal Radiol 2023 ; September 20 (Epub ahead of print)
  • 28 Montin E, Kijowski R, Youm T, Lattanzi R. A radiomics approach to the diagnosis of femoroacetabular impingement. Front Radiol 2023; 3: 1151258
  • 29 Wang L, Wen D, Yin Y. et al. Musculoskeletal ultrasound image-based radiomics for the diagnosis of Achilles tendinopathy in skiers. J Ultrasound Med 2023; 42 (02) 363-371
  • 30 Xie Y, Dan Y, Tao H. et al. Radiomics feature analysis of cartilage and subchondral bone in differentiating knees predisposed to posttraumatic osteoarthritis after anterior cruciate ligament reconstruction from healthy knees. BioMed Res Int 2021; 2021: 4351499
  • 31 Tamez-Peña J, Rosella P, Totterman S. et al. Post-concussive mTBI in student athletes: MRI features and machine learning. Front Neurol 2022; 12: 734329
  • 32 Tarzi G, Tarzi C, Saha A, Cusimano MD. Predicting severity of head collision events in elite soccer using preinjury data: a machine learning approach. Clin J Sport Med 2023; 33 (02) 165-171
  • 33 Rosenblatt CK, Harriss A, Babul AN, Rosenblatt SA. Machine learning for subtyping concussion using a clustering approach. Front Hum Neurosci 2021; 15: 716643
  • 34 Hartmann R, Avermann F, Zalpour C, Griefahn A. Impact of an AI app-based exercise program for people with low back pain compared to standard care: a longitudinal cohort-study. Health Sci Rep 2023; 6 (01) e1060
  • 35 Blasco JM, Díaz-Díaz B, Igual-Camacho C, Pérez-Maletzki J, Hernández-Guilén D, Roig-Casasús S. Effectiveness of using a chatbot to promote adherence to home physiotherapy after total knee replacement, rationale and design of a randomized clinical trial. BMC Musculoskelet Disord 2023; 24 (01) 491
  • 36 Oh YJ, Zhang J, Fang ML, Fukuoka Y. A systematic review of artificial intelligence chatbots for promoting physical activity, healthy diet, and weight loss. Int J Behav Nutr Phys Act 2021; 18 (01) 160
  • 37 Rau A, Rau S, Zoeller D. et al. A context-based chatbot surpasses trained radiologists and generic ChatGPT in following the ACR appropriateness guidelines. Radiology 2023; 308 (01) e230970
  • 38 Dwyer T, Hoit G, Burns D. et al. Use of an artificial intelligence conversational agent (chatbot) for hip arthroscopy patients following surgery. Arthrosc Sports Med Rehabil 2023; 5 (02) e495-e505
  • 39 Maher CA, Davis CR, Curtis RG, Short CE, Murphy KJ. A physical activity and diet program delivered by artificially intelligent virtual health coach: proof-of-concept study. JMIR Mhealth Uhealth 2020; 8 (07) e17558
  • 40 Seshadri DR, Li RT, Voos JE. et al. Wearable sensors for monitoring the internal and external workload of the athlete. NPJ Digit Med 2019; 2: 71
  • 41 Martínez-Gramage J, Albiach JP, Moltó IN, Amer-Cuenca JJ, Huesa Moreno V, Segura-Ortí E. A random forest machine learning framework to reduce running injuries in young triathletes. Sensors (Basel) 2020; 20 (21) 6388
  • 42 Hall MM. Return to play after thigh muscle injury: utility of serial ultrasound in guiding clinical progression. Curr Sports Med Rep 2018; 17 (09) 296-301
  • 43 Steiner B, Elgert L, Haux R, Wolf KH. AGT-Reha-WK study: protocol for a non-inferiority trial comparing the efficacy and costs of home-based telerehabilitation for shoulder diseases with medical exercise therapy. BMJ Open 2020; 10 (10) e036881
  • 44 Burns DM, Leung N, Hardisty M, Whyne CM, Henry P, McLachlin S. Shoulder physiotherapy exercise recognition: machine learning the inertial signals from a smartwatch. Physiol Meas 2018; 39 (07) 075007
  • 45 Condino S, Turini G, Viglialoro R, Gesi M, Ferrari V. Wearable augmented reality application for shoulder rehabilitation. Electronics (Basel) 2019; 8 (10) 1178
  • 46 van der Horst N, Backx F, Goedhart EA, Huisstede BM. HIPS-Delphi Group. Return to play after hamstring injuries in football (soccer): a worldwide Delphi procedure regarding definition, medical criteria and decision-making. Br J Sports Med 2017; 51 (22) 1583-1591
  • 47 Ekstrand J, Hägglund M, Waldén M. Epidemiology of muscle injuries in professional football (soccer). Am J Sports Med 2011; 39 (06) 1226-1232
  • 48 Ekstrand J, Healy JC, Waldén M, Lee JC, English B, Hägglund M. Hamstring muscle injuries in professional football: the correlation of MRI findings with return to play. Br J Sports Med 2012; 46 (02) 112-117
  • 49 Delvaux F, Rochcongar P, Bruyère O. et al. Return-to-play criteria after hamstring injury: actual medicine practice in professional soccer teams. J Sports Sci Med 2014; 13 (03) 721-723
  • 50 Valle X, Mechó S, Alentorn-Geli E. et al. Return to play prediction accuracy of the MLG-R classification system for hamstring injuries in football players: a machine learning approach. Sports Med 2022; 52 (09) 2271-2282
  • 51 Skoki A, Napravnik M, Polonijo M, Štajduhar I, Lerga J. Revolutionizing soccer injury management: predicting muscle injury recovery time using ML. Appl Sci (Basel) 2023; 13 (10) 6222
  • 52 Chu Y, Knell G, Brayton RP, Burkhart SO, Jiang X, Shams S. Machine learning to predict sports-related concussion recovery using clinical data. Ann Phys Rehabil Med 2022; 65 (04) 101626
  • 53 Ramkumar PN, Karnuta JM, Haeberle HS, Rodeo SA, Nwachukwu BU, Williams III RJ. Effect of preoperative imaging and patient factors on clinically meaningful outcomes and quality of life after osteochondral allograft transplantation: a machine learning analysis of cartilage defects of the knee. Am J Sports Med 2021; 49 (08) 2177-2186
  • 54 Martin RK, Wastvedt S, Pareek A. et al. Machine learning algorithm to predict anterior cruciate ligament revision demonstrates external validity. Knee Surg Sports Traumatol Arthrosc 2022; 30 (02) 368-375
  • 55 Martin RK, Wastvedt S, Pareek A. et al. Predicting anterior cruciate ligament reconstruction revision: a machine learning analysis utilizing the Norwegian Knee Ligament Register. J Bone Joint Surg Am 2022; 104 (02) 145-153
  • 56 Martin RK, Wastvedt S, Pareek A. et al. Predicting subjective failure of ACL reconstruction: a machine learning analysis of the Norwegian Knee Ligament Register and patient reported outcomes. J ISAKOS 2022; 7 (03) 1-9
  • 57 Norori N, Hu Q, Aellen FM, Faraci FD, Tzovara A. Addressing bias in big data and AI for health care: a call for open science. Patterns (N Y) 2021; 2 (10) 100347
  • 58 Bernstein MH, Atalay MK, Dibble EH. et al. Can incorrect artificial intelligence (AI) results impact radiologists, and if so, what can we do about it? A multi-reader pilot study of lung cancer detection with chest radiography. Eur Radiol 2023; 33 (11) 8263-8269
  • 59 Bhattacharyya M, Miller VM, Bhattacharyya D, Miller LE. High rates of fabricated and inaccurate references in ChatGPT-generated medical content. Cureus 2023; 15 (05) e39238
  • 60 McCarthy CJ, Berkowitz S, Ramalingam V, Ahmed M. Evaluation of an artificial intelligence chatbot for delivery of IR patient education material: a comparison with societal website content. J Vasc Interv Radiol 2023; 34 (10) 1760-1768.e32
  • 61 Naik N, Hameed BMZ, Shetty DK. et al. Legal and ethical consideration in artificial intelligence in healthcare: who takes responsibility?. Front Surg 2022; 9: 862322
  • 62 Bullock GS, Mylott J, Hughes T, Nicholson KF, Riley RD, Collins GS. Just how confident can we be in predicting sports injuries? a systematic review of the methodological conduct and performance of existing musculoskeletal injury prediction models in sport. Sports Med 2022; 52 (10) 2469-2482