Semin Musculoskelet Radiol 2024; 28(02): 130-138
DOI: 10.1055/s-0043-1778030
Review Article

Osseous Stress Injuries: Treatment Algorithms and Return to Play

1   The Warren Alpert Medical School of Brown University/Rhode Island Hospital, Providence, Rhode Island
› Author Affiliations


Osseous stress injuries are common in athletes. Specifically, lower extremity injuries are prevalent in running athletes and upper extremity injuries are prevalent in throwing athletes. Such injuries are suspected when there is focal bone tenderness and increased pain with the inciting activity. In elite athletes, osseous stress injuries are a relatively common culprit in lost play time. Thus rapid diagnosis and treatment is imperative to expedite return to play (RTP). The radiologist's role in these cases is not only for diagnosis, but also to grade the injury, which has implications in determining a treatment regimen. The high sensitivity and specificity of magnetic resonance imaging is thus the preferred imaging modality. This article discusses common osseous stress injuries, the imaging findings, and how different treatment regimens affect RTP.

Publication History

Article published online:
14 March 2024

© 2024. Thieme. All rights reserved.

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

  • References

  • 1 Fredericson M, Jennings F, Beaulieu C, Matheson GO. Stress fractures in athletes. Top Magn Reson Imaging 2006; 17 (05) 309-325
  • 2 Hoenig T, Ackerman KE, Beck BR. et al. Bone stress injuries. Nat Rev Dis Primers 2022; 8 (01) 26
  • 3 Hoenig T, Tenforde AS, Strahl A, Rolvien T, Hollander K. Does magnetic resonance imaging grading correlate with return to sports after bone stress injuries? A systematic review and meta-analysis. Am J Sports Med 2022; 50 (03) 834-844
  • 4 Daffner RH, Pavlov H. Stress fractures: current concepts. AJR Am J Roentgenol 1992; 159 (02) 245-252
  • 5 Orava S, Hulkko A, Koskinen S, Taimela S. Stress fractures in athletes and military recruits. An overview [in German]. Orthopade 1995; 24 (05) 457-466
  • 6 Behrens SB, Deren ME, Matson A, Fadale PD, Monchik KO. Stress fractures of the pelvis and legs in athletes: a review. Sports Health 2013; 5 (02) 165-174
  • 7 Bennell KL, Malcolm SA, Thomas SA. et al. Risk factors for stress fractures in female track-and-field athletes: a retrospective analysis. Clin J Sport Med 1995; 5 (04) 229-235
  • 8 Bennell KL, Malcolm SA, Thomas SA. et al. Risk factors for stress fractures in track and field athletes. A twelve-month prospective study. Am J Sports Med 1996; 24 (06) 810-818
  • 9 Kelsey JL, Bachrach LK, Procter-Gray E. et al. Risk factors for stress fracture among young female cross-country runners. Med Sci Sports Exerc 2007; 39 (09) 1457-1463
  • 10 Warden S. History and evaluation. In: Tenforde A, Fredericson M, eds. Bone Stress Injuries in Athletes: Diagnosis, Treatment, and Prevention. New York, NY:: Springer;; 2022: 3-12
  • 11 Changstrom BG, Brou L, Khodaee M, Braund C, Comstock RD. Epidemiology of stress fracture injuries among US high school athletes, 2005–2006 through 2012–2013. Am J Sports Med 2015; 43 (01) 26-33
  • 12 Rizzone KH, Ackerman KE, Roos KG, Dompier TP, Kerr ZY. The epidemiology of stress fractures in collegiate student-athletes, 2004–2005 through 2013–2014 academic years. J Athl Train 2017; 52 (10) 966-975
  • 13 Bergman AG, Fredericson M, Ho C, Matheson GO. Asymptomatic tibial stress reactions: MRI detection and clinical follow-up in distance runners. AJR Am J Roentgenol 2004; 183 (03) 635-638
  • 14 Boden BP, Osbahr DC. High-risk stress fractures: evaluation and treatment. J Am Acad Orthop Surg 2000; 8 (06) 344-353
  • 15 Boden BP, Osbahr DC, Jimenez C. Low-risk stress fractures. Am J Sports Med 2001; 29 (01) 100-111
  • 16 Robertson GA, Wood AM. Lower limb stress fractures in sport: optimising their management and outcome. World J Orthop 2017; 8 (03) 242-255
  • 17 Fredericson M, Bergman AG, Hoffman KL, Dillingham MS. Tibial stress reaction in runners. Correlation of clinical symptoms and scintigraphy with a new magnetic resonance imaging grading system. Am J Sports Med 1995; 23 (04) 472-481
  • 18 Sommer HM, Vallentyne SW. Effect of foot posture on the incidence of medial tibial stress syndrome. Med Sci Sports Exerc 1995; 27 (06) 800-804
  • 19 Becker J, Nakajima M, Wu WFW. Factors contributing to medial tibial stress syndrome in runners: a prospective study. Med Sci Sports Exerc 2018; 50 (10) 2092-2100
  • 20 Becker J, Nakajima M, Wu W. A prospective study on medial tibial stress syndrome in runners. Med Sci Sports Exerc 2017; 49 (05) 141
  • 21 Milner CE, Foch E, Gonzales JM, Petersen D. Biomechanics associated with tibial stress fracture in runners: a systematic review and meta-analysis. J Sport Health Sci 2023; 12 (03) 333-342
  • 22 Milner CE, Hamill J, Davis IS. Distinct hip and rearfoot kinematics in female runners with a history of tibial stress fracture. J Orthop Sports Phys Ther 2010; 40 (02) 59-66
  • 23 Nunns M, House C, Rice H. et al. Four biomechanical and anthropometric measures predict tibial stress fracture: a prospective study of 1065 Royal Marines. Br J Sports Med 2016; 50 (19) 1206-1210
  • 24 Robertson GA, Wood AM. Return to sports after stress fractures of the tibial diaphysis: a systematic review. Br Med Bull 2015; 114 (01) 95-111
  • 25 Ekenman I, Milgrom C, Finestone A. et al. The role of biomechanical shoe orthoses in tibial stress fracture prevention. Am J Sports Med 2002; 30 (06) 866-870
  • 26 Swenson Jr EJ, DeHaven KE, Sebastianelli WJ, Hanks G, Kalenak A, Lynch JM. The effect of a pneumatic leg brace on return to play in athletes with tibial stress fractures. Am J Sports Med 1997; 25 (03) 322-328
  • 27 Kidd LJ, Cowling NR, Wu AC, Kelly WL, Forwood MR. Selective and non-selective cyclooxygenase inhibitors delay stress fracture healing in the rat ulna. J Orthop Res 2013; 31 (02) 235-242
  • 28 Kaeding CC, Yu JR, Wright R, Amendola A, Spindler KP. Management and return to play of stress fractures. Clin J Sport Med 2005; 15 (06) 442-447
  • 29 McInnis KC, Ramey LN. High-risk stress fractures: diagnosis and management. PMR 2016; 8 (3, Suppl): S113-S124
  • 30 Fredericson M, Un Jang K, Bergman AG, Gold GE. Femoral diaphyseal stress fractures: results of a systematic bone scan and magnetic resonance imaging evaluation in 25 runners. Phys Ther Sport 2004; 5: 188-193
  • 31 Bernstein EM, Kelsey TJ, Cochran GK, Deafenbaugh BK, Kuhn KM. Femoral neck stress fractures: an updated review. J Am Acad Orthop Surg 2022; 30 (07) 302-311
  • 32 Hwang B, Fredericson M, Chung CB, Beaulieu CF, Gold GE. MRI findings of femoral diaphyseal stress injuries in athletes. AJR Am J Roentgenol 2005; 185 (01) 166-173
  • 33 Brukner PD, Bennell KL. Stress fractures in runners. J Back Musculoskeletal Rehabil 1995; 5 (04) 341-351
  • 34 Ramey LN, McInnis KC, Palmer WE. Femoral neck stress fracture: can MRI grade help predict return-to-running time?. Am J Sports Med 2016; 44 (08) 2122-2129
  • 35 Polacek M, Småbrekke A. Displaced stress fracture of the femoral neck in young active adults. BMJ Case Rep 2010; 2010: bcr0220102749
  • 36 Mayer SW, Joyner PW, Almekinders LC, Parekh SG. Stress fractures of the foot and ankle in athletes. Sports Health 2014; 6 (06) 481-491 Published correction appears in Sports Health 2015;7(6):557
  • 37 Kaiser PB, Guss D, DiGiovanni CW. Republication of “Stress Fractures of the Foot and Ankle in Athletes. ” Foot Ankle Orthop 2023; 8 (03) 24 730114231195045
  • 38 Irion V, Miller TL, Kaeding CC. The treatment and outcomes of medial malleolar stress fractures: a systematic review of the literature. Sports Health 2014; 6 (06) 527-530
  • 39 Patel KA, Christopher ZK, Drakos MC, O'Malley MJ. Navicular stress fractures. J Am Acad Orthop Surg 2021; 29 (04) 148-157
  • 40 Saxena A, Fullem B, Hannaford D. Results of treatment of 22 navicular stress fractures and a new proposed radiographic classification system. J Foot Ankle Surg 2000; 39 (02) 96-103
  • 41 Saxena A, Fullem B. Navicular stress fractures: a prospective study on athletes. Foot Ankle Int 2006; 27 (11) 917-921
  • 42 Attia AK, Mahmoud K, Bariteau J, Labib SA, DiGiovanni CW, D'Hooghe P. Return to sport following navicular stress fracture: a systematic review and meta-analysis of three hundred and fifteen fractures. Int Orthop 2021; 45 (10) 2699-2710
  • 43 Ekstrand J, van Dijk CN. Fifth metatarsal fractures among male professional footballers: a potential career-ending disease. Br J Sports Med 2013; 47 (12) 754-758
  • 44 Mallee WH, Weel H, van Dijk CN, van Tulder MW, Kerkhoffs GM, Lin CW. Surgical versus conservative treatment for high-risk stress fractures of the lower leg (anterior tibial cortex, navicular and fifth metatarsal base): a systematic review. Br J Sports Med 2015; 49 (06) 370-376
  • 45 Torg JS, Balduini FC, Zelko RR, Pavlov H, Peff TC, Das M. Fractures of the base of the fifth metatarsal distal to the tuberosity. Classification and guidelines for non-surgical and surgical management. J Bone Joint Surg Am 1984; 66 (02) 209-214
  • 46 Kriz P, Rafferty J, Evangelista P, Van Valkenburg S, DiGiovanni C. Stress fracture of the second metatarsal and sprain of Lisfranc joint in a pre-professional ballet dancer. J Dance Med Sci 2015; 19 (02) 80-85
  • 47 Cain Jr EL, Dugas JR, Wolf RS, Andrews JR. Elbow injuries in throwing athletes: a current concepts review. Am J Sports Med 2003; 31 (04) 621-635
  • 48 Lin KM, Ellenbecker TS, Safran MR. Rehabilitation and return to sport following elbow injuries. Arthrosc Sports Med Rehabil 2022; 4 (03) e1245-e1251
  • 49 Eygendaal D, Safran MR. Postero-medial elbow problems in the adult athlete. Br J Sports Med 2006; 40 (05) 430-434 ; discussion 434
  • 50 Furushima K, Itoh Y, Iwabu S, Yamamoto Y, Koga R, Shimizu M. Classification of olecranon stress fractures in baseball players. Am J Sports Med 2014; 42 (06) 1343-1351
  • 51 Schickendantz MS, Ho CP, Koh J. Stress injury of the proximal ulna in professional baseball players. Am J Sports Med 2002; 30 (05) 737-741
  • 52 Smith SR, Patel NK, White AE, Hadley CJ, Dodson CC. Stress fractures of the elbow in the throwing athlete: a systematic review. Orthop J Sports Med 2018;6(10):2325967118799262
  • 53 Andrews JR, Timmerman LA. Outcome of elbow surgery in professional baseball players. Am J Sports Med 1995; 23 (04) 407-413 DOI: 10.1177/036354659502300406.
  • 54 Park JY, Yoo HY, Chung SW. et al. Valgus extension overload syndrome in adolescent baseball players: clinical characteristics and surgical outcomes. J Shoulder Elbow Surg 2016; 25 (12) 2048-2056
  • 55 Paci JM, Dugas JR, Guy JA. et al. Cannulated screw fixation of refractory olecranon stress fractures with and without associated injuries allows a return to baseball. Am J Sports Med 2013; 41 (02) 306-312
  • 56 Hy C, Eygendaal D, The B. Elbow arthroscopy – indications and technique. J Clin Orthop Trauma 2021; 19: 147-153
  • 57 Rahusen FT, Brinkman JM, Eygendaal D. Results of arthroscopic debridement for osteochondritis dissecans of the elbow. Br J Sports Med 2006; 40 (12) 966-969
  • 58 Benjamin HJ, Engel SC, Chudzik D. Wrist pain in gymnasts: a review of common overuse wrist pathology in the gymnastics athlete. Curr Sports Med Rep 2017; 16 (05) 322-329
  • 59 Wolf MR, Avery D, Wolf JM. Upper extremity injuries in gymnasts. Hand Clin 2017; 33 (01) 187-197
  • 60 Heyworth BE, Kramer DE, Martin DJ, Micheli LJ, Kocher MS, Bae DS. Trends in the presentation, management, and outcomes of Little League shoulder. Am J Sports Med 2016; 44 (06) 1431-1438
  • 61 Bednar ED, Kay J, Memon M, Simunovic N, Purcell L, Ayeni OR. Diagnosis and management of Little League shoulder: a systematic review. Orthop J Sports Med 2021; 9 (07) 23 259671211017563