Semin Thromb Hemost
DOI: 10.1055/s-0044-1779485
Review Article

Progress in von Willebrand Disease Treatment: Evolution towards Newer Therapies

Miriam M. Moser
1   Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
,
Christian Schoergenhofer
1   Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
,
Bernd Jilma
1   Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
› Author Affiliations

Abstract

von Willebrand disease (VWD) is a very heterogenous disease, resulting in different phenotypes and different degrees of bleeding severity. Established therapies (i.e., desmopressin, antifibrinolytic agents, hormone therapy for heavy menstrual bleeding, and von Willebrand factor [VWF] concentrates) may work in some subtypes, but not in all patients. In recent years, progress has been made in improving the diagnosis of VWD subtypes, allowing for more specific therapy. The impact of VWD on women's daily lives has also come to the fore in recent years, with hormone therapy, tranexamic acid, or recombinant VWF as treatment options. New treatment approaches, including the replacement of lacking factor VIII (FVIII) function, may work in those subgroups affected by severe FVIII deficiency. Reducing the clearance of VWF is an alternative treatment pathway; for example, rondaptivon pegol is a VWFA1 domain-binding aptamer which not only improves plasma VWF/FVIII levels, but also corrects platelet counts in thrombocytopenic type 2B VWD patients. These approaches are currently in clinical development, which will be the focus of this review. In addition, half-life extension methods are also important for the improvement of patients' quality of life. Targeting specific mutations may further lead to personalized treatments in the future. Finally, a few randomized controlled trials, although relatively small, have been published in recent years, aiming to achieve a higher level of evidence in future guidelines.



Publication History

Article published online:
08 February 2024

© 2024. Thieme. All rights reserved.

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 Casari C, Du V, Wu YP. et al. Accelerated uptake of VWF/platelet complexes in macrophages contributes to VWD type 2B-associated thrombocytopenia. Blood 2013; 122 (16) 2893-2902
  • 2 Sadler JE, Mannucci PM, Berntorp E. et al. Impact, diagnosis and treatment of von Willebrand disease. Thromb Haemost 2000; 84 (02) 160-174
  • 3 Favaloro EJ. Navigating the myriad of von Willebrand factor assays. Hamostaseologie 2020; 40 (04) 431-442
  • 4 Favaloro EJ, Pasalic L, Curnow J. Laboratory tests used to help diagnose von Willebrand disease: an update. Pathology 2016; 48 (04) 303-318
  • 5 Denis CV, Susen S, Lenting PJ. von Willebrand disease: what does the future hold?. Blood 2021; 137 (17) 2299-2306
  • 6 James PD, Connell NT, Ameer B. et al. ASH ISTH NHF WFH 2021 guidelines on the diagnosis of von Willebrand disease. Blood Adv 2021; 5 (01) 280-300
  • 7 Leebeek FWG, Eikenboom JCJ. von Willebrand's disease. N Engl J Med 2016; 375 (21) 2067-2080
  • 8 Sadler JE, Budde U, Eikenboom JCJ. et al; Working Party on von Willebrand Disease Classification. Update on the pathophysiology and classification of von Willebrand disease: a report of the Subcommittee on von Willebrand Factor. J Thromb Haemost 2006; 4 (10) 2103-2114
  • 9 Jilma-Stohlawetz P, Quehenberger P, Schima H. et al. Acquired von Willebrand factor deficiency caused by LVAD is ADAMTS-13 and platelet dependent. Thromb Res 2016; 137: 196-201
  • 10 Wang H, Li D, Chen Y. et al. Shear-induced acquired von Willebrand syndrome: an accomplice of bleeding events in adults on extracorporeal membrane oxygenation support. Front Cardiovasc Med 2023; 10: 1159894
  • 11 Casonato A, Sponga S, Pontara E. et al. von Willebrand factor abnormalities in aortic valve stenosis: pathophysiology and impact on bleeding. Thromb Haemost 2011; 106 (01) 58-66
  • 12 Franchini M, Mannucci PM. Acquired von Willebrand syndrome: focused for hematologists. Haematologica 2020; 105 (08) 2032-2037
  • 13 Barr RD, Sek J, Horsman J. et al. Health status and health-related quality of life associated with von Willebrand disease. Am J Hematol 2003; 73 (02) 108-114
  • 14 Govorov I, Ekelund L, Chaireti R. et al. Heavy menstrual bleeding and health-associated quality of life in women with von Willebrand's disease. Exp Ther Med 2016; 11 (05) 1923-1929
  • 15 Hagberg KW, Jick S, Du P, Truong Berthoz F, Özen G, Tzivelekis S. Impact of von Willebrand disease on women's health outcomes: a matched cohort database study. J Womens Health (Larchmt) 2022; 31 (09) 1262-1270
  • 16 Brignardello-Petersen R, El Alayli A, Husainat N. et al. Gynecologic and obstetric management of women with von Willebrand disease: summary of 3 systematic reviews of the literature. Blood Adv 2022; 6 (01) 228-237
  • 17 Connell NT, Flood VH, Brignardello-Petersen R. et al. ASH ISTH NHF WFH 2021 guidelines on the management of von Willebrand disease. Blood Adv 2021; 5 (01) 301-325
  • 18 Ozgönenel B, Rajpurkar M, Lusher JM. How do you treat bleeding disorders with desmopressin?. Postgrad Med J 2007; 83 (977) 159-163
  • 19 Kaufmann JE, Vischer UM. Cellular mechanisms of the hemostatic effects of desmopressin (DDAVP). J Thromb Haemost 2003; 1 (04) 682-689
  • 20 Castaman G, Lethagen S, Federici AB. et al. Response to desmopressin is influenced by the genotype and phenotype in type 1 von Willebrand disease (VWD): results from the European Study MCMDM-1VWD. Blood 2008; 111 (07) 3531-3539
  • 21 Fogarty H, Doherty D, O'Donnell JS. New developments in von Willebrand disease. Br J Haematol 2020; 191 (03) 329-339
  • 22 Federici AB. The use of desmopressin in von Willebrand disease: the experience of the first 30 years (1977-2007). Haemophilia 2008; 14 (Suppl. 01) 5-14
  • 23 Mannucci PM. New therapies for von Willebrand disease. Blood Adv 2019; 3 (21) 3481-3487
  • 24 Atiq F, Heijdra J, Snijders F. et al. Desmopressin response depends on the presence and type of genetic variants in patients with type 1 and type 2 von Willebrand disease. Blood Adv 2022; 6 (18) 5317-5326
  • 25 Kadir RA, Lee CA, Sabin CA, Pollard D, Economides DL. DDAVP nasal spray for treatment of menorrhagia in women with inherited bleeding disorders: a randomized placebo-controlled crossover study. Haemophilia 2002; 8 (06) 787-793
  • 26 Beltran A, Jaramillo AP, Vallejo MP. et al. Desmopressin as a treatment in patients with von Willebrand disease: a systematic review. Cureus 2023; 15 (08) e44310
  • 27 Steinlechner B, Zeidler P, Base E. et al. Patients with severe aortic valve stenosis and impaired platelet function benefit from preoperative desmopressin infusion. Ann Thorac Surg 2011; 91 (05) 1420-1426
  • 28 Peyvandi F, Castaman G, Gresele P. et al. A phase III study comparing secondary long-term prophylaxis versus on-demand treatment with vWF/FVIII concentrates in severe inherited von Willebrand disease. Blood Transfus 2019; 17 (05) 391-398
  • 29 Mannucci PM, Kempton C, Millar C. et al; rVWF Ad Hoc Study Group. Pharmacokinetics and safety of a novel recombinant human von Willebrand factor manufactured with a plasma-free method: a prospective clinical trial. Blood 2013; 122 (05) 648-657
  • 30 Mannucci PM, Tenconi PM, Castaman G, Rodeghiero F. Comparison of four virus-inactivated plasma concentrates for treatment of severe von Willebrand disease: a cross-over randomized trial. Blood 1992; 79 (12) 3130-3137
  • 31 Favaloro EJ, Lloyd J, Rowell J. et al. Comparison of the pharmacokinetics of two von Willebrand factor concentrates [Biostate and AHF (high purity)] in people with von Willebrand disorder. A randomised cross-over, multi-centre study. Thromb Haemost 2007; 97 (06) 922-930
  • 32 Kessler CM, Friedman K, Schwartz BA, Gill JC, Powell JS, Wilate PK. Wilate PK Study Investigators. The pharmacokinetic diversity of two von Willebrand factor (VWF)/ factor VIII (FVIII) concentrates in subjects with congenital von Willebrand disease. Results from a prospective, randomised crossover study. Thromb Haemost 2011; 106 (02) 279-288
  • 33 Turecek PL, Mitterer A, Matthiessen HP. et al. Development of a plasma- and albumin-free recombinant von Willebrand factor. Hamostaseologie 2009; 29 (Suppl. 01) S32-S38
  • 34 Pekrul I, Kragh T, Turecek PL, Novack AR, Ott HW, Spannagl M. Sensitive and specific assessment of recombinant von Willebrand factor in platelet function analyzer. Platelets 2019; 30 (02) 264-270
  • 35 López JA, Dong JF. Shear stress and the role of high molecular weight von Willebrand factor multimers in thrombus formation. Blood Coagul Fibrinolysis 2005; 16 (Suppl. 01) S11-S16
  • 36 Favaloro EJ, Dean M, Grispo L, Exner T, Koutts J. von Willebrand's disease: use of collagen binding assay provides potential improvement to laboratory monitoring of desmopressin (DDAVP) therapy. Am J Hematol 1994; 45 (03) 205-211
  • 37 Favaloro EJ, Kershaw G, Bukuya M, Hertzberg M, Koutts J. Laboratory diagnosis of von Willebrand disorder (vWD) and monitoring of DDAVP therapy: efficacy of the PFA-100 and vWF:CBA as combined diagnostic strategies. Haemophilia 2001; 7 (02) 180-189
  • 38 Favaloro EJ, Thom J, Patterson D. et al. Potential supplementary utility of combined PFA-100 and functional von Willebrand factor testing for the laboratory assessment of desmopressin and factor concentrate therapy in von Willebrand disease. Blood Coagul Fibrinolysis 2009; 20 (06) 475-483
  • 39 Casonato A, Daidone V, Galletta E, Bertomoro A. Type 2B von Willebrand disease with or without large multimers: a distinction of the two sides of the disorder is long overdue. PLoS ONE 2017; 12 (06) e0179566
  • 40 Ay C, Pabinger I, Kovacevic KD. et al. The VWF binding aptamer rondoraptivon pegol increases platelet counts and VWF/FVIII in type 2B von Willebrand disease. Blood Adv 2022; 6 (18) 5467-5476
  • 41 Leebeek FWG, Peyvandi F, Escobar M. et al. Recombinant von Willebrand factor prophylaxis in patients with severe von Willebrand disease: phase 3 study results. Blood 2022; 140 (02) 89-98
  • 42 Peyvandi F, Mamaev A, Wang JD. et al. Phase 3 study of recombinant von Willebrand factor in patients with severe von Willebrand disease who are undergoing elective surgery. J Thromb Haemost 2019; 17 (01) 52-62
  • 43 Gill JC, Castaman G, Windyga J. et al. Gill JC, Castaman G, Windyga J, et al. Hemostatic efficacy, safety, and pharmacokinetics of a recombinant von Willebrand factor in severe von Willebrand disease. Blood. 2015;126(17):2038-2046. Blood 2020; 136 (21) 2479-2480
  • 44 Wong J, George RB, Hanley CM, Saliba C, Yee DA, Jerath A. Tranexamic acid: current use in obstetrics, major orthopedic, and trauma surgery. Can J Anaesth 2021; 68 (06) 894-917
  • 45 Patel PA, Wyrobek JA, Butwick AJ. et al. Update on applications and limitations of perioperative tranexamic acid. Anesth Analg 2022; 135 (03) 460-473
  • 46 Shakur H, Roberts I, Bautista R. et al; CRASH-2 Trial Collaborators. Effects of tranexamic acid on death, vascular occlusive events, and blood transfusion in trauma patients with significant haemorrhage (CRASH-2): a randomised, placebo-controlled trial. Lancet 2010; 376 (9734): 23-32
  • 47 CRASH-3 Trial Collaborators. Effects of tranexamic acid on death, disability, vascular occlusive events and other morbidities in patients with acute traumatic brain injury (CRASH-3): a randomised, placebo-controlled trial. Lancet 2019; 394 (10210): 1713-1723
  • 48 Ragni MV, Rothenberger SD, Feldman R. et al. Recombinant von Willebrand factor and tranexamic acid for heavy menstrual bleeding in patients with mild and moderate von Willebrand disease in the USA (VWDMin): a phase 3, open-label, randomised, crossover trial. Lancet Haematol 2023; 10 (08) e612-e623
  • 49 Laffan M, Sathar J, Johnsen JM. von Willebrand disease: diagnosis and treatment, treatment of women, and genomic approach to diagnosis. Haemophilia 2021; 27 (Suppl. 03) 66-74
  • 50 Epstein A, Turan O, Abdul-Kadir R. Concurrent use of tranexamic acid and hormonal therapy for the management of heavy menstrual bleeding in women. Accessed September 23, 2023 at: https://abstracts.isth.org/abstract/concurrent-use-of-tranexamic-acid-and-hormonal-therapy-for-the-management-of-heavy-menstrual-bleeding-in-women/
  • 51 Food and Drugs Authority. Summary of product characteristics. Tranexamic acid. Accessed January 20, 2024 at: https://www.accessdata.fda.gov/drugsatfda_docs/nda/2009/022430_lysteda_toc.cfm
  • 52 von Drygalski A, Chowdary P, Kulkarni R. et al; XTEND-1 Trial Group. Efanesoctocog alfa prophylaxis for patients with severe Hemophilia A. N Engl J Med 2023; 388 (04) 310-318
  • 53 Konkle BA, Shapiro AD, Quon DV. et al. BIVV001 fusion protein as factor VIII replacement therapy for Hemophilia A. N Engl J Med 2020; 383 (11) 1018-1027
  • 54 Gelbenegger G, Schoergenhofer C, Knoebl P, Jilma B. Bridging the missing link with emicizumab: a bispecific antibody for treatment of Hemophilia A. Thromb Haemost 2020; 120 (10) 1357-1370
  • 55 Oldenburg J, Mahlangu JN, Kim B. et al. Emicizumab prophylaxis in Hemophilia A with inhibitors. N Engl J Med 2017; 377 (09) 809-818
  • 56 Thomas VM, Abou-Ismail MY, Lim MY. Off-label use of emicizumab in persons with acquired haemophilia A and von Willebrand disease: a scoping review of the literature. Haemophilia 2022; 28 (01) 4-17
  • 57 Shanmukhaiah C, Jijina F, Kannan S. et al. Efficacy of emicizumab in von Willebrand disease (VWD) patients with and without alloantibodies to von Willebrand factor (VWF): report of two cases and review of literature. Haemophilia 2022; 28 (02) 286-291
  • 58 Lenting PJ, Kizlik-Manson C, Casari C. Towards novel treatment options in von Willebrand disease. Haemophilia 2022; 28 (Suppl. 04) 5-10
  • 59 Barg AA, Avishai E, Budnik I. et al. The potential role of emicizumab prophylaxis in severe von Willebrand disease. Blood Cells Mol Dis 2021; 87: 102530
  • 60 Yaoi H, Shida Y, Kitazawa T, Shima M, Nogami K. Emicizumab improves thrombus formation of type 2A von willebrand disease under high shear condition. Haemophilia 2021; 27 (02) e194-e203
  • 61 Yaoi H, Shida Y, Ogiwara K, Kitazawa T, Shima M, Nogami K. Emicizumab enhances thrombus formation in vitro under high shear flow conditions in whole blood from patients with type 1 and type 3 von Willebrand disease. Haemophilia 2022; 28 (05) 694-701
  • 62 Weyand AC, Flood VH, Shavit JA, Pipe SW. Efficacy of emicizumab in a pediatric patient with type 3 von Willebrand disease and alloantibodies. Blood Adv 2019; 3 (18) 2748-2750
  • 63 Kim B. Prophylactic efficacy of VGA039, an anti-protein S monoclonal antibody, in a novel non-human primate model of acquired von Willebrand disease. ISTH Congress. 2023;382382:PB1311. Accessed August 03, 2023 at: https://isth2023.eventscribe.net/fsPopup.asp?efp=VVhMVFVTWlIxNjMzNQ&PresentationID=1255459&rnd=0.416879&mode=presInfo
  • 64 Rastegarlari G, Pegon JN, Casari C. et al. Macrophage LRP1 contributes to the clearance of von Willebrand factor. Blood 2012; 119 (09) 2126-2134
  • 65 Casonato A, Gallinaro L, Cattini MG. et al. Reduced survival of type 2B von Willebrand factor, irrespective of large multimer representation or thrombocytopenia. Haematologica 2010; 95 (08) 1366-1372
  • 66 Rayes J, Hollestelle MJ, Legendre P. et al. Mutation and ADAMTS13-dependent modulation of disease severity in a mouse model for von Willebrand disease type 2B. Blood 2010; 115 (23) 4870-4877
  • 67 Denis CV, Christophe OD, Oortwijn BD, Lenting PJ. Clearance of von Willebrand factor. Thromb Haemost 2008; 99 (02) 271-278
  • 68 van Schooten CJ, Shahbazi S, Groot E. et al. Macrophages contribute to the cellular uptake of von Willebrand factor and factor VIII in vivo. Blood 2008; 112 (05) 1704-1712
  • 69 Lenting PJ, Christophe OD, Denis CV. von Willebrand factor biosynthesis, secretion, and clearance: connecting the far ends. Blood 2015; 125 (13) 2019-2028
  • 70 Kovacevic KD, Grafeneder J, Schörgenhofer C. et al. The von Willebrand factor A-1 domain binding aptamer BT200 elevates plasma levels of von Willebrand factor and factor VIII: a first-in-human trial. Haematologica 2022; 107 (09) 2121-2132
  • 71 Jilma B, Paulinska P, Jilma-Stohlawetz P, Gilbert JC, Hutabarat R, Knöbl P. A randomised pilot trial of the anti-von Willebrand factor aptamer ARC1779 in patients with type 2b von Willebrand disease. Thromb Haemost 2010; 104 (03) 563-570
  • 72 Gilbert JC, DeFeo-Fraulini T, Hutabarat RM. et al. First-in-human evaluation of anti von Willebrand factor therapeutic aptamer ARC1779 in healthy volunteers. Circulation 2007; 116 (23) 2678-2686
  • 73 Jilma-Stohlawetz P, Gorczyca ME, Jilma B, Siller-Matula J, Gilbert JC, Knöbl P. Inhibition of von Willebrand factor by ARC1779 in patients with acute thrombotic thrombocytopenic purpura. Thromb Haemost 2011; 105 (03) 545-552
  • 74 Mayr FB, Knöbl P, Jilma B. et al. The aptamer ARC1779 blocks von Willebrand factor-dependent platelet function in patients with thrombotic thrombocytopenic purpura ex vivo. Transfusion 2010; 50 (05) 1079-1087
  • 75 Jilma-Stohlawetz P, Gilbert JC, Gorczyca ME, Knöbl P, Jilma B. A dose ranging phase I/II trial of the von Willebrand factor inhibiting aptamer ARC1779 in patients with congenital thrombotic thrombocytopenic purpura. Thromb Haemost 2011; 106 (03) 539-547
  • 76 Zhu S, Gilbert JC, Hatala P. et al. The development and characterization of a long acting anti-thrombotic von Willebrand factor (VWF) aptamer. J Thromb Haemost 2020; 18 (05) 1113-1123
  • 77 Ruggeri ZM, Mendolicchio GL. Interaction of von Willebrand factor with platelets and the vessel wall. Hamostaseologie 2015; 35 (03) 211-224
  • 78 Chion A, Fazavana J, Byrne C. et al. Aptamer BT200 Prolongs VWF half-life by Blocking Interaction with Macrophage Scavenger Receptor LRP1. Montréal, Canada: ISTH; 2023
  • 79 Fazavana J, Brophy TM, Chion A. et al. Investigating the clearance of VWF A-domains using site-directed PEGylation and novel N-linked glycosylation. J Thromb Haemost 2020; 18 (06) 1278-1290
  • 80 Ay C, Kovacevic KD, Kraemmer D. et al. The von Willebrand factor-binding aptamer rondaptivon pegol as a treatment for severe and nonsevere hemophilia A. Blood 2023; 141 (10) 1147-1158
  • 81 Federici AB, Mannucci PM, Castaman G. et al. Clinical and molecular predictors of thrombocytopenia and risk of bleeding in patients with von Willebrand disease type 2B: a cohort study of 67 patients. Blood 2009; 113 (03) 526-534
  • 82 Kyrle PA, Niessner H, Dent J. et al. IIB von Willebrand's disease: pathogenetic and therapeutic studies. Br J Haematol 1988; 69 (01) 55-59
  • 83 Wohner N, Legendre P, Casari C, Christophe OD, Lenting PJ, Denis CV. Shear stress-independent binding of von Willebrand factor-type 2B mutants p.R1306Q & p.V1316M to LRP1 explains their increased clearance. J Thromb Haemost 2015; 13 (05) 815-820
  • 84 Zhang L, Su J, Shen F. et al. A novel monoclonal antibody against the von Willebrand factor A2 domain reduces its cleavage by ADAMTS13. J Hematol Oncol 2017; 10 (01) 42
  • 85 Schwameis M, Schörgenhofer C, Assinger A, Steiner MM, Jilma B. VWF excess and ADAMTS13 deficiency: a unifying pathomechanism linking inflammation to thrombosis in DIC, malaria, and TTP. Thromb Haemost 2015; 113 (04) 708-718
  • 86 Shi Q, Fahs SA, Mattson JG. et al. A novel mouse model of type 2N VWD was developed by CRISPR/Cas9 gene editing and recapitulates human type 2N VWD. Blood Adv 2022; 6 (09) 2778-2790
  • 87 Peyron I. KB-V13A12, a novel nanobody-based therapeutic molecule for the treatment of von Willebrand disease. ISTH Congress. 2023;392448:OC 08.3.
  • 88 Roullet S, Luc N, Rayes J. et al. Efficacy of platelet-inspired hemostatic nanoparticles on bleeding in von Willebrand disease murine models. Blood 2023; 141 (23) 2891-2900
  • 89 Casari C, Pinotti M, Lancellotti S. et al. The dominant-negative von Willebrand factor gene deletion p.P1127_C1948delinsR: molecular mechanism and modulation. Blood 2010; 116 (24) 5371-5376
  • 90 de Jong A, Dirven RJ, Boender J. et al. Ex vivo improvement of a von Willebrand disease type 2A phenotype using an allele-specific small-interfering RNA. Thromb Haemost 2020; 120 (11) 1569-1579
  • 91 Campioni M, Legendre P, Loubiere C. et al. In vivo modulation of a dominant-negative variant in mouse models of von Willebrand disease type 2A. J Thromb Haemost 2021; 19 (01) 139-146
  • 92 Schillemans M, Kat M, Westeneng J. et al. Alternative trafficking of Weibel-Palade body proteins in CRISPR/Cas9-engineered von Willebrand factor-deficient blood outgrowth endothelial cells. Res Pract Thromb Haemost 2019; 3 (04) 718-732
  • 93 De Meyer SF, Vanhoorelbeke K, Chuah MK. et al. Phenotypic correction of von Willebrand disease type 3 blood-derived endothelial cells with lentiviral vectors expressing von Willebrand factor. Blood 2006; 107 (12) 4728-4736
  • 94 de Wee EM, Sanders YV, Mauser-Bunschoten EP. et al; WiN study group. Determinants of bleeding phenotype in adult patients with moderate or severe von Willebrand disease. Thromb Haemost 2012; 108 (04) 683-692
  • 95 Leebeek FWG. Heavy menstrual blood loss in patients with von Willebrand disease: an unsolved problem. Lancet Haematol 2023; 10 (08) e561-e562
  • 96 Christopherson PA, Haberichter SL, Flood VH. et al; Zimmerman Program Investigators. Molecular pathogenesis and heterogeneity in type 3 VWD families in U.S. Zimmerman program. J Thromb Haemost 2022; 20 (07) 1576-1588
  • 97 Selvam S, James P. Angiodysplasia in von Willebrand disease: understanding the clinical and basic science. Semin Thromb Hemost 2017; 43 (06) 572-580
  • 98 Randi AM, Smith KE, Castaman G. von Willebrand factor regulation of blood vessel formation. Blood 2018; 132 (02) 132-140
  • 99 Favaloro EJ. Von Willebrand factor collagen-binding (activity) assay in the diagnosis of von Willebrand disease: a 15-year journey. Semin Thromb Hemost 2002; 28 (02) 191-202
  • 100 Gritsch H, Schrenk G, Weinhappl N, Mellgård B, Ewenstein B, Turecek PL. Structure and function of recombinant versus plasma-derived von Willebrand factor and impact on multimer pharmacokinetics in von Willebrand disease. J Blood Med 2022; 13: 649-662