RSS-Feed abonnieren

DOI: 10.1055/s-0044-1779486
The new era of artificial intelligence in neuroradiology: current research and promising tools
A nova era da inteligência artificial em neurorradiologia: pesquisa atual e ferramentas promissoras
Abstract
Radiology has a number of characteristics that make it an especially suitable medical discipline for early artificial intelligence (AI) adoption. These include having a well-established digital workflow, standardized protocols for image storage, and numerous well-defined interpretive activities. The more than 200 commercial radiologic AI-based products recently approved by the Food and Drug Administration (FDA) to assist radiologists in a number of narrow image-analysis tasks such as image enhancement, workflow triage, and quantification, corroborate this observation. However, in order to leverage AI to boost efficacy and efficiency, and to overcome substantial obstacles to widespread successful clinical use of these products, radiologists should become familiarized with the emerging applications in their particular areas of expertise. In light of this, in this article we survey the existing literature on the application of AI-based techniques in neuroradiology, focusing on conditions such as vascular diseases, epilepsy, and demyelinating and neurodegenerative conditions. We also introduce some of the algorithms behind the applications, briefly discuss a few of the challenges of generalization in the use of AI models in neuroradiology, and skate over the most relevant commercially available solutions adopted in clinical practice. If well designed, AI algorithms have the potential to radically improve radiology, strengthening image analysis, enhancing the value of quantitative imaging techniques, and mitigating diagnostic errors.
Resumo
A radiologia tem uma série de características que a torna uma disciplina médica especialmente adequada à adoção precoce da inteligência artificial (IA), incluindo um fluxo de trabalho digital bem estabelecido, protocolos padronizados para armazenamento de imagens e inúmeras atividades interpretativas bem definidas. Tal adequação é corroborada pelos mais de 200 produtos radiológicos comerciais baseados em IA recentemente aprovados pelo Food and Drug Administration (FDA) para auxiliar os radiologistas em uma série de tarefas restritas de análise de imagens, como quantificação, triagem de fluxo de trabalho e aprimoramento da qualidade das imagens. Entretanto, para o aumento da eficácia e eficiência da IA, além de uma utilização clínica bem-sucedida dos produtos que utilizam essa tecnologia, os radiologistas devem estar atualizados com as aplicações em suas áreas específicas de atuação. Assim, neste artigo, pesquisamos na literatura existente aplicações baseadas em IA em neurorradiologia, mais especificamente em condições como doenças vasculares, epilepsia, condições desmielinizantes e neurodegenerativas. Também abordamos os principais algoritmos por trás de tais aplicações, discutimos alguns dos desafios na generalização no uso desses modelos e introduzimos as soluções comercialmente disponíveis mais relevantes adotadas na prática clínica. Se cautelosamente desenvolvidos, os algoritmos de IA têm o potencial de melhorar radicalmente a radiologia, aperfeiçoando a análise de imagens, aumentando o valor das técnicas de imagem quantitativas e mitigando erros de diagnóstico.
Palavras-chave
Inteligência Artificial - Aprendizado Profundo - Aprendizado de Máquina - NeurorradiologiaAuthors' Contributions
LTL, AJR: contributions for the design of the work; FBCM, ALMPD, MPN, CSA, CMR, LTL, AJR, FCK: contributions in the writing, critical revision, and final approval.
Publikationsverlauf
Eingereicht: 18. Oktober 2023
Angenommen: 13. Dezember 2023
Artikel online veröffentlicht:
02. April 2024
© 2024. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution 4.0 International License, permitting copying and reproduction so long as the original work is given appropriate credit (https://creativecommons.org/licenses/by/4.0/)
Thieme Revinter Publicações Ltda.
Rua do Matoso 170, Rio de Janeiro, RJ, CEP 20270-135, Brazil
Fabíola Bezerra de Carvalho Macruz, Ana Luiza Mandetta Pettengil Dias, Celi Santos Andrade, Mariana Penteado Nucci, Carolina de Medeiros Rimkus, Leandro Tavares Lucato, Antônio José da Rocha, Felipe Campos Kitamura. The new era of artificial intelligence in neuroradiology: current research and promising tools. Arq Neuropsiquiatr 2024; 82: s00441779486.
DOI: 10.1055/s-0044-1779486
-
References
- 1 Lui YW, Chang PD, Zaharchuk G. et al. Artificial Intelligence in Neuroradiology: Current Status and Future Directions. AJNR Am J Neuroradiol 2020; 41 (08) E52-E59
- 2 Fiani B, Pasko KBD, Sarhadi K, Covarrubias C. Current uses, emerging applications, and clinical integration of artificial intelligence in neuroradiology. Rev Neurosci 2021; 33 (04) 383-395
- 3 Duong MT, Rauschecker AM, Mohan S. Diverse Applications of Artificial Intelligence in Neuroradiology. Neuroimaging Clin N Am 2020; 30 (04) 505-516
- 4 Olthof AW, van Ooijen PMA, Rezazade Mehrizi MH. Promises of artificial intelligence in neuroradiology: a systematic technographic review. Neuroradiology 2020; 62 (10) 1265-1278
- 5 Chen X, Lei Y, Su J. et al. A Review of Artificial Intelligence in Cerebrovascular Disease Imaging: Applications and Challenges. Curr Neuropharmacol 2022; 20 (07) 1359-1382
- 6 Segato A, Marzullo A, Calimeri F, De Momi E. Artificial intelligence for brain diseases: A systematic review. APL Bioeng 2020; 4 (04) 041503
- 7 Saba L, Sanagala SS, Gupta SK. et al. Multimodality carotid plaque tissue characterization and classification in the artificial intelligence paradigm: a narrative review for stroke application. Ann Transl Med 2021; 9 (14) 1206
- 8 Monteiro M, Newcombe VFJ, Mathieu F. et al. Multiclass semantic segmentation and quantification of traumatic brain injury lesions on head CT using deep learning: an algorithm development and multicentre validation study. Lancet Digit Health 2020; 2 (06) e314-e322
- 9 Mouridsen K, Thurner P, Zaharchuk G. Artificial Intelligence Applications in Stroke. Stroke 2020; 51 (08) 2573-2579
- 10 van Os HJA, Ramos LA, Hilbert A. et al; MR CLEAN Registry Investigators. Predicting Outcome of Endovascular Treatment for Acute Ischemic Stroke: Potential Value of Machine Learning Algorithms. Front Neurol 2018; 9: 784
- 11 Suarez JI, Tarr RW, Selman WR. Aneurysmal subarachnoid hemorrhage. N Engl J Med 2006; 354 (04) 387-396
- 12 Yang X, Blezek DJ, Cheng LT, Ryan WJ, Kallmes DF, Erickson BJ. Computer-aided detection of intracranial aneurysms in MR angiography. J Digit Imaging 2011; 24 (01) 86-95
- 13 Malik KM, Anjum SM, Soltanian-Zadeh H, Malik H, Malik GM. A Framework for Intracranial Saccular Aneurysm Detection and Quantification using Morphological Analysis of Cerebral Angiograms. IEEE Access 2018; 6: 7970-7986
- 14 Shi Z, Miao C, Schoepf UJ. et al. A clinically applicable deep-learning model for detecting intracranial aneurysm in computed tomography angiography images. Nat Commun 2020; 11 (01) 6090
- 15 Ueda D, Yamamoto A, Nishimori M. et al. Deep Learning for MR Angiography: Automated Detection of Cerebral Aneurysms. Radiology 2019; 290 (01) 187-194
- 16 Jin H, Geng J, Yin Y. et al. Fully automated intracranial aneurysm detection and segmentation from digital subtraction angiography series using an end-to-end spatiotemporal deep neural network. J Neurointerv Surg 2020; 12 (10) 1023-1027
- 17 Zeng Y, Liu X, Xiao N. et al. Automatic Diagnosis Based on Spatial Information Fusion Feature for Intracranial Aneurysm. IEEE Trans Med Imaging 2020; 39 (05) 1448-1458
- 18 Chen G, Lu M, Shi Z. et al. Development and validation of machine learning prediction model based on computed tomography angiography-derived hemodynamics for rupture status of intracranial aneurysms: a Chinese multicenter study. Eur Radiol 2020; 30 (09) 5170-5182
- 19 Paliwal N, Jaiswal P, Tutino VM. et al. Outcome prediction of intracranial aneurysm treatment by flow diverters using machine learning. Neurosurg Focus 2018; 45 (05) E7
- 20 Cho J, Park KS, Karki M. et al. Improving Sensitivity on Identification and Delineation of Intracranial Hemorrhage Lesion Using Cascaded Deep Learning Models. J Digit Imaging 2019; 32 (03) 450-461
- 21 de Toledo P, Rios PM, Ledezma A, Sanchis A, Alen JF, Lagares A. Predicting the outcome of patients with subarachnoid hemorrhage using machine learning techniques. IEEE Trans Inf Technol Biomed 2009; 13 (05) 794-801
- 22 Xia N, Chen J, Zhan C. et al. Prediction of Clinical Outcome at Discharge After Rupture of Anterior Communicating Artery Aneurysm Using the Random Forest Technique. Front Neurol 2020; 11: 538052
- 23 Babin D, Spyrantis M, Pizurica A, Philips W. Pixel profiling for extraction of arteriovenous malformation in 3-D CTA images. Conference proceedings: Conference proceedings : Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Conference. 2013. 5449-5452
- 24 Peng SJ, Lee CC, Wu HM. et al. Fully automated tissue segmentation of the prescription isodose region delineated through the Gamma knife plan for cerebral arteriovenous malformation (AVM) using fuzzy C-means (FCM) clustering. Neuroimage Clin 2019; 21: 101608
- 25 Simon AB, Hurt B, Karunamuni R. et al. Automated segmentation of multiparametric magnetic resonance images for cerebral AVM radiosurgery planning: a deep learning approach. Sci Rep 2022; 12 (01) 786
- 26 Shi K, Xiao W, Wu G. et al. Temporal-Spatial Feature Extraction of DSA Video and Its Application in AVM Diagnosis. Front Neurol 2021; 12: 655523
- 27 Wang H, Ye X, Gao X, Zhou S, Lin Z. The diagnosis of arteriovenous malformations by 4D-CTA: a clinical study. J Neuroradiol 2014; 41 (02) 117-123
- 28 Anderson JL, Khattab MH, Sherry AD. et al. Improved Cerebral Arteriovenous Malformation Obliteration With 3-Dimensional Rotational Digital Subtraction Angiography for Radiosurgical Planning: A Retrospective Cohort Study. Neurosurgery 2020; 88 (01) 122-130
- 29 Garcia C, Fang Y-B, Liu J, Narata A, Orlando J, Larrabide I. A deep learning model for brain vessel segmentation in 3DRA with arteriovenous malformations. SPIE Digital Library. 2022; 28
- 30 Hong JS, Lin CJ, Lin YH. et al. Machine Learning Application With Quantitative Digital Subtraction Angiography for Detection of Hemorrhagic Brain Arteriovenous Malformations. IEEE Access 2020; 8: 204573-204584
- 31 Oermann EK, Rubinsteyn A, Ding D. et al. Using a Machine Learning Approach to Predict Outcomes after Radiosurgery for Cerebral Arteriovenous Malformations. Sci Rep 2016; 6: 21161
- 32 Zhou Y-J, Xie X-L, Hou Z-G, Bian G-B, Liu S-Q, Zhou X-H. FRR-NET: Fast Recurrent Residual Networks for Real-Time Catheter Segmentation and Tracking in Endovascular Aneurysm Repair," In: 2020 IEEE 17th International Symposium on Biomedical Imaging (ISBI); 2020; Iowa City, USA. pp. 961-964
- 33 Mainali S, Darsie ME, Smetana KS. Machine Learning in Action: Stroke Diagnosis and Outcome Prediction. Front Neurol 2021; 12: 734345
- 34 Kuo W, Hӓne C, Mukherjee P, Malik J, Yuh EL. Expert-level detection of acute intracranial hemorrhage on head computed tomography using deep learning. Proc Natl Acad Sci U S A 2019; 116 (45) 22737-22745
- 35 Chen Z, Zhang R, Xu F. et al. Novel Prehospital Prediction Model of Large Vessel Occlusion Using Artificial Neural Network. Front Aging Neurosci 2018; 10: 181 Erratum in: Front Aging Neurosci. 2018 Jul 17;10:222. PMID: 29997494; PMCID: PMC6028566
- 36 Nagel S, Joly O, Pfaff J. et al. e-ASPECTS derived acute ischemic volumes on non-contrast-enhanced computed tomography images. Int J Stroke 2020; 15 (09) 995-1001
- 37 Bridge CP, Bizzo BC, Hillis JM. et al. Development and clinical application of a deep learning model to identify acute infarct on magnetic resonance imaging. Sci Rep 2022; 12 (01) 2154
- 38 Chen L, Bentley P, Rueckert D. Fully automatic acute ischemic lesion segmentation in DWI using convolutional neural networks. Neuroimage Clin 2017; 15: 633-643
- 39 Yu Y, Xie Y, Thamm T. et al. Use of Deep Learning to Predict Final Ischemic Stroke Lesions From Initial Magnetic Resonance Imaging. JAMA Netw Open 2020; 3 (03) e200772 Erratum in: JAMA Netw Open. 2020 Oct 1;3(10):e2026464. PMID: 32163165; PMCID: PMC7068232
- 40 Ho KC, Speier W, Zhang H, Scalzo F, El-Saden S, Arnold CW. A Machine Learning Approach for Classifying Ischemic Stroke Onset Time From Imaging. IEEE Trans Med Imaging 2019; 38 (07) 1666-1676
- 41 Yu Y, Guo D, Lou M, Liebeskind D, Scalzo F. Prediction of Hemorrhagic Transformation Severity in Acute Stroke From Source Perfusion MRI. IEEE Trans Biomed Eng 2018; 65 (09) 2058-2065
- 42 Dritsas E, Trigka M. Stroke Risk Prediction with Machine Learning Techniques. Sensors (Basel) 2022; 22 (13) 4670
- 43 Dhar R, Chen Y, An H, Lee JM. Application of Machine Learning to Automated Analysis of Cerebral Edema in Large Cohorts of Ischemic Stroke Patients. Front Neurol 2018; 9: 687
- 44 Nielsen A, Hansen MB, Tietze A, Mouridsen K. Prediction of Tissue Outcome and Assessment of Treatment Effect in Acute Ischemic Stroke Using Deep Learning. Stroke 2018; 49 (06) 1394-1401
- 45 Yu J, Zhou Y, Yang Q. et al. Machine learning models for screening carotid atherosclerosis in asymptomatic adults. Sci Rep 2021; 11 (01) 22236
- 46 Ding L, Zhou R, Liu G. Eds. Study on the classification algorithm of degree of arteriosclerosis based on fuzzy pattern recognition. In: International Conference on Image Processing and Pattern Recognition in Industrial Engineering; 2010; Xi'an, China. 78200B. https://doi.org/10.1117/12.867445
- 47 Terrada O, Cherradi B, Raihani A, Bouattane O. Atherosclerosis disease prediction using Supervised Machine Learning Techniques. In: 1st International Conference on Innovative Research in Applied Science, Engineering and Technology (IRASET); 2020; Meknes; Morocco. pp. 1-5
- 48 Lekadir K, Galimzianova A, Betriu A. et al. A Convolutional Neural Network for Automatic Characterization of Plaque Composition in Carotid Ultrasound. IEEE J Biomed Health Inform 2017; 21 (01) 48-55
- 49 Jamthikar AD, Gupta D, Mantella LE. et al. Multiclass machine learning vs. conventional calculators for stroke/CVD risk assessment using carotid plaque predictors with coronary angiography scores as gold standard: a 500 participants study. Int J Cardiovasc Imaging 2021; 37 (04) 1171-1187
- 50 Kim T, Heo J, Jang DK. et al. Machine learning for detecting moyamoya disease in plain skull radiography using a convolutional neural network. EBioMedicine 2019; 40: 636-642
- 51 Akiyama Y, Mikami T, Mikuni N. Deep Learning-Based Approach for the Diagnosis of Moyamoya Disease. J Stroke Cerebrovasc Dis 2020; 29 (12) 105322
- 52 Hu T, Lei Y, Su J. et al. Learning spatiotemporal features of DSA using 3D CNN and BiConvGRU for ischemic moyamoya disease detection. Int J Neurosci 2023; 133 (05) 512-522
- 53 Lei Y, Zhang X, Ni W. et al. Recognition of moyamoya disease and its hemorrhagic risk using deep learning algorithms: sourced from retrospective studies. Neural Regen Res 2021; 16 (05) 830-835
- 54 Lei Y, Chen X, Su JB. et al. Recognition of Cognitive Impairment in Adult Moyamoya Disease: A Classifier Based on High-Order Resting-State Functional Connectivity Network. Front Neural Circuits 2020; 14: 603208
- 55 Thijs RD, Surges R, O'Brien TJ, Sander JW. Epilepsy in adults. Lancet 2019; 393 (10172): 689-701
- 56 Thompson PM, Jahanshad N, Ching CRK. et al; ENIGMA Consortium. ENIGMA and global neuroscience: A decade of large-scale studies of the brain in health and disease across more than 40 countries. Transl Psychiatry 2020; 10 (01) 100
- 57 Sisodiya SM, Whelan CD, Hatton SN. et al; ENIGMA Consortium Epilepsy Working Group. The ENIGMA-Epilepsy working group: Mapping disease from large data sets. Hum Brain Mapp 2020; 43 (01) 113-128
- 58 Gleichgerrcht E, Munsell BC, Alhusaini S. et al; ENIGMA-Epilepsy Working Group. Artificial intelligence for classification of temporal lobe epilepsy with ROI-level MRI data: A worldwide ENIGMA-Epilepsy study. Neuroimage Clin 2021; 31: 102765
- 59 Louis S, Morita-Sherman M, Jones S. et al. Hippocampal Sclerosis Detection with NeuroQuant Compared with Neuroradiologists. AJNR Am J Neuroradiol 2020; 41 (04) 591-597
- 60 Blumcke I, Spreafico R, Haaker G. et al; EEBB Consortium. Histopathological Findings in Brain Tissue Obtained during Epilepsy Surgery. N Engl J Med 2017; 377 (17) 1648-1656
- 61 Mellerio C, Labeyrie MA, Chassoux F. et al. 3T MRI improves the detection of transmantle sign in type 2 focal cortical dysplasia. Epilepsia 2014; 55 (01) 117-122
- 62 Urbach H, Heers M, Altenmueller DM. et al. “Within a minute” detection of focal cortical dysplasia. Neuroradiology 2022; 64 (04) 715-726
- 63 Gill RS, Lee HM, Caldairou B. et al. Multicenter Validation of a Deep Learning Detection Algorithm for Focal Cortical Dysplasia. Neurology 2021; 97 (16) e1571-e1582
- 64 Munsell BC, Wu G, Fridriksson J. et al. Relationship between neuronal network architecture and naming performance in temporal lobe epilepsy: A connectome based approach using machine learning. Brain Lang 2019; 193: 45-57
- 65 Cendes F, McDonald CR. Artificial Intelligence Applications in the Imaging of Epilepsy and Its Comorbidities: Present and Future. Epilepsy Curr 2022; 22 (02) 91-96
- 66 Pardoe HR, Cole JH, Blackmon K, Thesen T, Kuzniecky R. Human Epilepsy Project Investigators. Structural brain changes in medically refractory focal epilepsy resemble premature brain aging. Epilepsy Res 2017; 133: 28-32
- 67 Hwang G, Hermann B, Nair VA. et al. Brain aging in temporal lobe epilepsy: Chronological, structural, and functional. Neuroimage Clin 2020; 25: 102183
- 68 Morita-Sherman M, Li M, Joseph B. et al. Incorporation of quantitative MRI in a model to predict temporal lobe epilepsy surgery outcome. Brain Commun 2021; 3 (03) fcab164
- 69 Whiting AC, Morita-Sherman M, Li M. et al. Automated analysis of cortical volume loss predicts seizure outcomes after frontal lobectomy. Epilepsia 2021; 62 (05) 1074-1084
- 70 Gleichgerrcht E, Munsell B, Bhatia S. et al. Deep learning applied to whole-brain connectome to determine seizure control after epilepsy surgery. Epilepsia 2018; 59 (09) 1643-1654
- 71 Thompson AJ, Banwell BL, Barkhof F. et al. Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria. Lancet Neurol 2018; 17 (02) 162-173
- 72 Wingerchuk DM, Banwell B, Bennett JL. et al; International Panel for NMO Diagnosis. International consensus diagnostic criteria for neuromyelitis optica spectrum disorders. Neurology 2015; 85 (02) 177-189
- 73 Dos Passos GR, Oliveira LM, da Costa BK. et al. MOG-IgG-Associated Optic Neuritis, Encephalitis, and Myelitis: Lessons Learned From Neuromyelitis Optica Spectrum Disorder. Front Neurol 2018; 9: 217
- 74 Sati P, Oh J, Constable RT. et al; NAIMS Cooperative. The central vein sign and its clinical evaluation for the diagnosis of multiple sclerosis: a consensus statement from the North American Imaging in Multiple Sclerosis Cooperative. Nat Rev Neurol 2016; 12 (12) 714-722
- 75 La Rosa F, Wynen M, Al-Louzi O. et al. Cortical lesions, central vein sign, and paramagnetic rim lesions in multiple sclerosis: Emerging machine learning techniques and future avenues. Neuroimage Clin 2022; 36: 103205
- 76 Kappos L, De Stefano N, Freedman MS. et al. Inclusion of brain volume loss in a revised measure of 'no evidence of disease activity' (NEDA-4) in relapsing-remitting multiple sclerosis. Mult Scler 2016; 22 (10) 1297-1305
- 77 Cacciaguerra L, Storelli L, Rocca MA, Filippi M. Augmenting Neurological Disorder Prediction and Rehabilitation Using Artificial Intelligence. 6 - Current and future applications of artificial intelligence in multiple sclerosis. In: Pillai AS, Menon B. eds. Augmenting Neurological Disorder Prediction and Rehabilitation Using Artificial Intelligence. Academic Press; 2022: 107-144
- 78 Cacciaguerra L, Meani A, Mesaros S. et al. Brain and cord imaging features in neuromyelitis optica spectrum disorders. Ann Neurol 2019; 85 (03) 371-384
- 79 Rakić M, Vercruyssen S, Van Eyndhoven S. et al. icobrain ms 5.1: Combining unsupervised and supervised approaches for improving the detection of multiple sclerosis lesions. Neuroimage Clin 2021; 31: 102707
- 80 Aslam N, Khan IU, Bashamakh A. et al. Multiple Sclerosis Diagnosis Using Machine Learning and Deep Learning: Challenges and Opportunities. Sensors (Basel) 2022; 22 (20) 7856 https://mdpi-res.com/d_attachment/sensors/sensors-22-07856/article_deploy/sensors-22-07856.pdf?version=1665912497 [Internet]
- 81 Bonacchi R, Filippi M, Rocca MA. Role of artificial intelligence in MS clinical practice. Neuroimage Clin 2022; 35: 103065
- 82 Suh CH, Kim SJ, Jung SC, Choi CG, Kim HS. The “Central Vein Sign” on T2*-weighted Images as a Diagnostic Tool in Multiple Sclerosis: A Systematic Review and Meta-analysis using Individual Patient Data. Sci Rep 2019; 9 (01) 18188
- 83 Maggi P, Fartaria MJ, Jorge J. et al. CVSnet: A machine learning approach for automated central vein sign assessment in multiple sclerosis. NMR Biomed 2020; 33 (05) e4283
- 84 Mendelsohn Z, Pemberton HG, Gray J. et al. Commercial volumetric MRI reporting tools in multiple sclerosis: a systematic review of the evidence. Neuroradiology 2023; 65 (01) 5-24
- 85 Dillenseger A, Weidemann ML, Trentzsch K. et al. Digital Biomarkers in Multiple Sclerosis. Brain Sci 2021; 11 (11) 1519
- 86 Sima DM, Esposito G, Van Hecke W, Ribbens A, Nagels G, Smeets D. Health Economic Impact of Software-Assisted Brain MRI on Therapeutic Decision-Making and Outcomes of Relapsing-Remitting Multiple Sclerosis Patients-A Microsimulation Study. Brain Sci 2021; 11 (12) 1570
- 87 Nabizadeh F, Ramezannezhad E, Kargar A, Sharafi AM, Ghaderi A. Diagnostic performance of artificial intelligence in multiple sclerosis: a systematic review and meta-analysis. Neurol Sci 2023; 44 (02) 499-517
- 88 Checkoway H, Lundin JI, Kelada SN. Neurodegenerative diseases. IARC Sci Publ 2011; (163) 407-419
- 89 Young PNE, Estarellas M, Coomans E. et al. Imaging biomarkers in neurodegeneration: current and future practices. Alzheimers Res Ther 2020; 12 (01) 49
- 90 Park M, Moon WJ, Structural MR. Structural MR Imaging in the Diagnosis of Alzheimer's Disease and Other Neurodegenerative Dementia: Current Imaging Approach and Future Perspectives. Korean J Radiol 2016; 17 (06) 827-845
- 91 Urs R, Potter E, Barker W. et al. Visual rating system for assessing magnetic resonance images: a tool in the diagnosis of mild cognitive impairment and Alzheimer disease. J Comput Assist Tomogr 2009; 33 (01) 73-78
- 92 Tăuţan AM, Ionescu B, Santarnecchi E. Artificial intelligence in neurodegenerative diseases: A review of available tools with a focus on machine learning techniques. Artif Intell Med 2021; 117: 102081
- 93 Peralta C, Strafella AP, van Eimeren T. et al; International Parkinson Movement Disorders Society-Neuroimaging Study Group. Pragmatic Approach on Neuroimaging Techniques for the Differential Diagnosis of Parkinsonisms. Mov Disord Clin Pract (Hoboken) 2021; 9 (01) 6-19
- 94 Schwarz ST, Afzal M, Morgan PS, Bajaj N, Gowland PA, Auer DP. The 'swallow tail' appearance of the healthy nigrosome - a new accurate test of Parkinson's disease: a case-control and retrospective cross-sectional MRI study at 3T. PLoS One 2014; 9 (04) e93814
- 95 Gaurav R, Yahia-Cherif L, Pyatigorskaya N. et al. Longitudinal Changes in Neuromelanin MRI Signal in Parkinson's Disease: A Progression Marker. Mov Disord 2021; 36 (07) 1592-1602
- 96 Gaurav R, Pyatigorskaya N, Biondetti E. et al. Deep Learning-Based Neuromelanin MRI Changes of Isolated REM Sleep Behavior Disorder. Mov Disord 2022; 37 (05) 1064-1069
- 97 Xu J, Zhang M. Use of Magnetic Resonance Imaging and Artificial Intelligence in Studies of Diagnosis of Parkinson's Disease. ACS Chem Neurosci 2019; 10 (06) 2658-2667
- 98 van der Burgh HK, Schmidt R, Westeneng HJ, de Reus MA, van den Berg LH, van den Heuvel MP. Deep learning predictions of survival based on MRI in amyotrophic lateral sclerosis. Neuroimage Clin 2016; 13: 361-369
- 99 Carrara G, Carapelli C, Venturi F. et al. A distinct MR imaging phenotype in amyotrophic lateral sclerosis: correlation between T1 magnetization transfer contrast hyperintensity along the corticospinal tract and diffusion tensor imaging analysis. AJNR Am J Neuroradiol 2012; 33 (04) 733-739
- 100 Rajagopalan V, Chaitanya KG, Pioro EP. Quantitative Brain MRI Metrics Distinguish Four Different ALS Phenotypes: A Machine Learning Based Study. Diagnostics (Basel) 2023; 13 (09) 1521