Subscribe to RSS

DOI: 10.1055/s-0044-1785467
Stability of Proximal Femoral Osteotomies in Pediatric Bone Models Fixed with Flexible Intramedullary Nails and Evaluated by the Finite Element Method
Article in several languages: português | EnglishFinancial Support The authors state that they received no financial support from public, commercial, or non-profit sources for this study.

Abstract
Objective To evaluate the stability of osteotomies created in the subtrochanteric and trochanteric regions in a pediatric femur model fixed by flexible intramedullary rods.
Method Tomographic sections were obtained from a pediatric femur model with two elastic titanium rods and converted to a three-dimensional model. This model created a mesh with tetrahedral elements according to the finite element method. Three virtual models were obtained, and osteotomies were performed in different regions: mediodiaphyseal, subtrochanteric, and trochanteric. A vertical load of 85N was applied to the top of the femoral head, obtaining the displacements, the maximum and minimum main stress, and the equivalent Von Mises stress on the implant.
Results With the applied load, displacements were observed at the osteotomy site of 0.04 mm in the diaphyseal group, 0.5 mm in the subtrochanteric group, and 0.06 mm in the trochanteric group. The maximum stress in the diaphyseal, subtrochanteric, and trochanteric groups was 10.4 Pa, 7.52 Pa, and 26.4 Pa, respectively. That is around 40% higher in the trochanteric group in regards to the diaphyseal (control). The minimum stress of the bone was located in the inner cortical of the femur. The equivalent Von Mises stress on the implants occurred at osteotomy, with a maximum value of 27.6 Pa in the trochanteric group.
Conclusion In both trochanteric and subtrochanteric osteotomies, fixation stability was often lower than in the diaphyseal model, suggesting that flexible intramedullary nails are not suitable implants for proximal femoral fixations.
Work developed at the Bioengineering Lab, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
Publication History
Received: 29 August 2023
Accepted: 06 November 2023
Article published online:
10 April 2024
© 2024. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution 4.0 International License, permitting copying and reproduction so long as the original work is given appropriate credit (https://creativecommons.org/licenses/by/4.0/)
Thieme Revinter Publicações Ltda.
Rua do Matoso 170, Rio de Janeiro, RJ, CEP 20270-135, Brazil
-
Referências
- 1 Métaizeau JP. Les fractures du fémur. In: Ostéosynthèse chez l'enfant: Embrochage centro-médullaire élastique stable. Montpellier:: Sauramps Médical; 1988: 77-84
- 2 Volpon J. Osteossíntese das fraturas diafisárias da criança com hastes intramedulares flexíveis. Rev Bras Ortop 2008; 43 (07) 261-270
- 3 Li Y, Heyworth BE, Glotzbecker M. et al. Comparison of titanium elastic nail and plate fixation of pediatric subtrochanteric femur fractures. J Pediatr Orthop 2013; 33 (03) 232-238
- 4 Parikh SN, Nathan ST, Priola MJ, Eismann EA. Elastic nailing for pediatric subtrochanteric and supracondylar femur fractures. Clin Orthop Relat Res 2014; 472 (09) 2735-2744
- 5 Xu Y, Bian J, Shen K, Xue B. Titanium elastic nailing versus locking compression plating in school-aged pediatric subtrochanteric femur fractures. Medicine (Baltimore) 2018; 97 (29) e11568
- 6 Cruz MAF, Battaglion LR, Volpon JB. Flexible intramedullary nails in pediatric subtrochanteric femur fracture: biomechanical study. Acta Ortop Bras 2023; 31 (spe2): e260008
- 7 Brekelmans WA, Poort HW, Slooff TJ. A new method to analyse the mechanical behaviour of skeletal parts. Acta Orthop Scand 1972; 43 (05) 301-317
- 8 Welch-Phillips A, Gibbons D, Ahern DP, Butler JS. What Is Finite Element Analysis?. Clin Spine Surg 2020; 33 (08) 323-324
- 9 Huiskes R, Chao EY. A survey of finite element analysis in orthopedic biomechanics: the first decade. J Biomech 1983; 16 (06) 385-409
- 10 Ye Y, You W, Zhu W, Cui J, Chen K, Wang D. The Applications of Finite Element Analysis in Proximal Humeral Fractures. Comput Math Methods Med 2017; 2017: 4879836
- 11 Freitas A, Demeneghi NC, Barin FR, Battaglion LR, Pires RE, Giordano V. Fratura da cabeça femoral de tipo II de Pipkin: Avaliação biomecânica pelo método de elementos finitos. Rev Bras Ortop 2023; 58 (03) 507-513
- 12 Cristofolini L, Viceconti M, Cappello A, Toni A. Mechanical validation of whole bone composite femur models. J Biomech 1996; 29 (04) 525-535
- 13 Heiner AD, Brown TD. Structural properties of a new design of composite replicate femurs and tibias. J Biomech 2001; 34 (06) 773-781
- 14 Flynn JM, Hresko T, Reynolds RA, Blasier RD, Davidson R, Kasser J. Titanium elastic nails for pediatric femur fractures: a multicenter study of early results with analysis of complications. J Pediatr Orthop 2001; 21 (01) 4-8
- 15 Narayanan UG, Hyman JE, Wainwright AM, Rang M, Alman BA. Complications of elastic stable intramedullary nail fixation of pediatric femoral fractures, and how to avoid them. J Pediatr Orthop 2004; 24 (04) 363-369
- 16 Sink EL, Gralla J, Repine M. Complications of pediatric femur fractures treated with titanium elastic nails: a comparison of fracture types. J Pediatr Orthop 2005; 25 (05) 577-580
- 17 DeTolla DH, Andreana S, Patra A, Buhite R, Comella B. Role of the finite element model in dental implants. J Oral Implantol 2000; 26 (02) 77-81
- 18 Dou B, Zhang FF, Ni M. et al. Biomechanical and finite element study of drilling sites for benign lesions in femoral head and neck with curettage, bone-grafting and internal fixation. Math Biosci Eng 2019; 16 (06) 7808-7828
- 19 Tucker SM, Wee H, Fox E, Reid JS, Lewis GS. Parametric Finite Element Analysis of Intramedullary Nail Fixation of Proximal Femur Fractures. J Orthop Res 2019; 37 (11) 2358-2366
- 20 Wang J, Ma JX, Lu B, Bai HH, Wang Y, Ma XL. Comparative finite element analysis of three implants fixing stable and unstable subtrochanteric femoral fractures: Proximal Femoral Nail Antirotation (PFNA), Proximal Femoral Locking Plate (PFLP), and Reverse Less Invasive Stabilization System (LISS). Orthop Traumatol Surg Res 2020; 106 (01) 95-101
- 21 Ahirwar H, Gupta VK, Nanda HS. Finite element analysis of fixed bone plates over fractured femur model. Comput Methods Biomech Biomed Engin 2021; 24 (15) 1742-1751
- 22 Lewis GS, Mischler D, Wee H, Reid JS, Varga P. Finite element analysis of fracture fixation. Curr Osteoporos Rep 2021; 19 (04) 403-416
- 23 Altai Z, Viceconti M, Offiah AC, Li X. Investigating the mechanical response of paediatric bone under bending and torsion using finite element analysis. Biomech Model Mechanobiol 2018; 17 (04) 1001-1009
- 24 Faria FF, Gruhl CEM, Ferro RR, Rached RN, Soni JF, Trevilatto P. Análise de elementos finitos de um dispositivo de dinamização controlada para fixação circular externa. Rev Bras Ortop 2021; 56 (01) 36-41
- 25 Soni JF, Santili C, Lancellotti CLP, Hecke MB, Almeida FR, Karam LZ. Análise comparativa em modelo computadorizado bidimensional com simulação do emprego de hastes flexíveis de aço e titânio, na fratura do fêmur da criança, utilizando o método dos elementos finitos. Rev Bras Ortop 2008; 43 (05) 183-192
- 26 Volpon JB, Perina MM, Okubo R, Maranho DAC. Biomechanical performance of flexible intramedullary nails with end caps tested in distal segmental defects of pediatric femur models. J Pediatr Orthop 2012; 32 (05) 461-466