Semin Musculoskelet Radiol 2024; 28(03): 257-266
DOI: 10.1055/s-0044-1785538
Review Article

Patellar Instability: Imaging Findings

1   Department of Musculoskeletal Imaging, University of Lille, CHU Lille, Lille, France
,
Souhir Abidi
1   Department of Musculoskeletal Imaging, University of Lille, CHU Lille, Lille, France
,
Laura Scarciolla
1   Department of Musculoskeletal Imaging, University of Lille, CHU Lille, Lille, France
,
Dunkan Petersbourg
1   Department of Musculoskeletal Imaging, University of Lille, CHU Lille, Lille, France
,
Sophie Putman
2   Department of Orthopedic Surgery, University of Lille, CHU Lille, Lille, France
,
Anne Cotten
1   Department of Musculoskeletal Imaging, University of Lille, CHU Lille, Lille, France
› Author Affiliations

Abstract

Patellofemoral instability results from impaired engagement of the patella in the trochlear groove at the start of flexion and may lead to pain and lateral patellar dislocation. It occurs most frequently in adolescents and young adults during sporting activities. Trochlear dysplasia, patella alta, and excessive lateralization of the tibial tuberosity are the most common risk factors for patellar instability. The main role of imaging is to depict and assess these anatomical factors and highlight features indicating previous lateral dislocation of the patella.



Publication History

Article published online:
20 May 2024

© 2024. Thieme. All rights reserved.

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 Dejour DH, Mesnard G, Giovannetti de Sanctis E. Updated treatment guidelines for patellar instability: “un menu à la carte.”. J Exp Orthop 2021; 8 (01) 109
  • 2 Dejour DH. The patellofemoral joint and its historical roots: the Lyon School of Knee Surgery. Knee Surg Sports Traumatol Arthrosc 2013; 21 (07) 1482-1494
  • 3 Dejour H, Walch G, Nove-Josserand L, Guier C. Factors of patellar instability: an anatomic radiographic study. Knee Surg Sports Traumatol Arthrosc 1994; 2 (01) 19-26
  • 4 Dietrich TJ, Fucentese SF, Pfirrmann CW. Imaging of individual anatomical risk factors for patellar instability. Semin Musculoskelet Radiol 2016; 20 (01) 65-73
  • 5 Wolfe S, Varacallo M, Thomas JD, Carroll JJ, Kahwaji CI. Patellar Instability. StatPearls. Available at: https://www.ncbi.nlm.nih.gov/books/NBK482427 . Accessed February 27, 2024
  • 6 Maas KJ, Warncke ML, Leiderer M. et al. Diagnostic imaging of patellofemoral instability. Rofo 2021; 193 (09) 1019-1033
  • 7 Amis AA. Current concepts on anatomy and biomechanics of patellar stability. Sports Med Arthrosc Rev 2007; 15 (02) 48-56
  • 8 Diederichs G, Issever AS, Scheffler S. MR imaging of patellar instability: injury patterns and assessment of risk factors. Radiographics 2010; 30 (04) 961-981 Published correction appears in Radiographics 2011;31(2):624
  • 9 van Huyssteen AL, Hendrix MR, Barnett AJ, Wakeley CJ, Eldridge JD. Cartilage-bone mismatch in the dysplastic trochlea. An MRI study. J Bone Joint Surg Br 2006; 88 (05) 688-691
  • 10 Salzmann GM, Weber TS, Spang JT, Imhoff AB, Schöttle PB. Comparison of native axial radiographs with axial MR imaging for determination of the trochlear morphology in patients with trochlear dysplasia. Arch Orthop Trauma Surg 2010; 130 (03) 335-340
  • 11 Dejour D, Saggin P. The sulcus deepening trochleoplasty—the Lyon's procedure. Int Orthop 2010; 34 (02) 311-316
  • 12 Lippacher S, Dejour D, Elsharkawi M. et al. Observer agreement on the Dejour trochlear dysplasia classification: a comparison of true lateral radiographs and axial magnetic resonance images. Am J Sports Med 2012; 40 (04) 837-843
  • 13 Nelitz M, Lippacher S, Reichel H, Dornacher D. Evaluation of trochlear dysplasia using MRI: correlation between the classification system of Dejour and objective parameters of trochlear dysplasia. Knee Surg Sports Traumatol Arthrosc 2014; 22 (01) 120-127
  • 14 Nacey NC, Fox MG, Luce BN, Boatman DM, Diduch DR. Assessing femoral trochlear morphologic features on cross-sectional imaging before trochleoplasty: Dejour classification versus quantitative measurement. AJR Am J Roentgenol 2020; 215 (02) 458-464
  • 15 Sharma N, Brown A, Bouras T, Kuiper JH, Eldridge J, Barnett A. The Oswestry-Bristol Classification. Bone Joint J 2020; 102-B (01) 102-107
  • 16 Konrads C, Gonser C, Ahmad SS. Reliability of the Oswestry-Bristol Classification for trochlear dysplasia: expanded characteristics. Bone Jt Open 2020; 1 (07) 355-358
  • 17 Carrillon Y, Abidi H, Dejour D, Fantino O, Moyen B, Tran-Minh VA. Patellar instability: assessment on MR images by measuring the lateral trochlear inclination-initial experience. Radiology 2000; 216 (02) 582-585
  • 18 Pfirrmann CW, Zanetti M, Romero J, Hodler J. Femoral trochlear dysplasia: MR findings. Radiology 2000; 216 (03) 858-864
  • 19 Ali SA, Helmer R, Terk MR. Analysis of the patellofemoral region on MRI: association of abnormal trochlear morphology with severe cartilage defects. AJR Am J Roentgenol 2010; 194 (03) 721-727
  • 20 Geraghty L, Humphries D, Fitzpatrick J. Assessment of the reliability and validity of imaging measurements for patellofemoral instability: an updated systematic review. Skeletal Radiol 2022; 51 (12) 2245-2256
  • 21 Greiwe RM, Saifi C, Ahmad CS, Gardner TR. Anatomy and biomechanics of patellar instability. Oper Tech Sports Med 2010; 18 (02) 62-67
  • 22 Koh JL, Stewart C. Patellar instability. Clin Sports Med 2014; 33 (03) 461-476
  • 23 Dejour H, Walch G, Neyret P, Adeleine P. La dysplasie de la trochlée fémorale [Dysplasia of the femoral trochlea]. Rev Chir Orthop Repar Appar Mot 1990; 76 (01) 45-54
  • 24 Ali SA, Helmer R, Terk MR. Patella alta: lack of correlation between patellotrochlear cartilage congruence and commonly used patellar height ratios. AJR Am J Roentgenol 2009; 193 (05) 1361-1366
  • 25 Phillips CL, Silver DA, Schranz PJ, Mandalia V. The measurement of patellar height: a review of the methods of imaging. J Bone Joint Surg Br 2010; 92 (08) 1045-1053
  • 26 Grelsamer RP, Meadows S. The modified Insall-Salvati ratio for assessment of patellar height. Clin Orthop Relat Res 1992; (282) 170-176
  • 27 Verhulst FV, van Sambeeck JDP, Olthuis GS, van der Ree J, Koëter S. Patellar height measurements: Insall-Salvati ratio is most reliable method. Knee Surg Sports Traumatol Arthrosc 2020; 28 (03) 869-875
  • 28 Lee PP, Chalian M, Carrino JA, Eng J, Chhabra A. Multimodality correlations of patellar height measurement on X-ray, CT, and MRI. Skeletal Radiol 2012; 41 (10) 1309-1314
  • 29 Miller TT, Staron RB, Feldman F. Patellar height on sagittal MR imaging of the knee. AJR Am J Roentgenol 1996; 167 (02) 339-341
  • 30 Yue RA, Arendt EA, Tompkins MA. Patellar height measurements on radiograph and magnetic resonance imaging in patellar instability and control patients. J Knee Surg 2017; 30 (09) 943-950
  • 31 Gracitelli GC, Pierami R, Tonelli TA. et al. Assessment of patellar height measurement methods from digital radiography. Rev Bras Ortop 2015; 47 (02) 210-213
  • 32 Seil R, Müller B, Georg T, Kohn D, Rupp S. Reliability and interobserver variability in radiological patellar height ratios. Knee Surg Sports Traumatol Arthrosc 2000; 8 (04) 231-236
  • 33 Berg EE, Mason SL, Lucas MJ. Patellar height ratios. A comparison of four measurement methods. Am J Sports Med 1996; 24 (02) 218-221
  • 34 Biedert RM, Albrecht S. The patellotrochlear index: a new index for assessing patellar height. Knee Surg Sports Traumatol Arthrosc 2006; 14 (08) 707-712
  • 35 Ahmad M, Janardhan S, Amerasekera S, Nightingale P, Ashraf T, Choudhary S. Reliability of patellotrochlear index in patellar height assessment on MRI—correction for variation due to change in knee flexion. Skeletal Radiol 2019; 48 (03) 387-393
  • 36 Watts RE, Gorbachova T, Fritz RC. et al. Patellar tracking: an old problem with new insights. Radiographics 2023; 43 (06) e220177
  • 37 Brady JM, Sullivan JP, Nguyen J. et al. The tibial tubercle-to-trochlear groove distance is reliable in the setting of trochlear dysplasia, and superior to the tibial tubercle-to-posterior cruciate ligament distance when evaluating coronal malalignment in patellofemoral instability. Arthroscopy 2017; 33 (11) 2026-2034
  • 38 Schoettle PB, Zanetti M, Seifert B, Pfirrmann CW, Fucentese SF, Romero J. The tibial tuberosity-trochlear groove distance; a comparative study between CT and MRI scanning. Knee 2006; 13 (01) 26-31
  • 39 Yao L, Gai N, Boutin RD. Axial scan orientation and the tibial tubercle-trochlear groove distance: error analysis and correction. AJR Am J Roentgenol 2014; 202 (06) 1291-1296
  • 40 Camp CL, Heidenreich MJ, Dahm DL, Stuart MJ, Levy BA, Krych AJ. Individualizing the tibial tubercle-trochlear groove distance: patellar instability ratios that predict recurrent instability. Am J Sports Med 2016; 44 (02) 393-399
  • 41 Ho CP, James EW, Surowiec RK. et al. Systematic technique-dependent differences in CT versus MRI measurement of the tibial tubercle-trochlear groove distance. Am J Sports Med 2015; 43 (03) 675-682
  • 42 Dietrich TJ, Betz M, Pfirrmann CW, Koch PP, Fucentese SF. End-stage extension of the knee and its influence on tibial tuberosity-trochlear groove distance (TTTG) in asymptomatic volunteers. Knee Surg Sports Traumatol Arthrosc 2014; 22 (01) 214-218
  • 43 Marquez-Lara A, Andersen J, Lenchik L, Ferguson CM, Gupta P. Variability in patellofemoral alignment measurements on MRI: influence of knee position. AJR Am J Roentgenol 2017; 208 (05) 1097-1102
  • 44 Kim HY, Kim KJ, Yang DS, Jeung SW, Choi HG, Choy WS. Screw-home movement of the tibiofemoral joint during normal gait: three-dimensional analysis. Clin Orthop Surg 2015; 7 (03) 303-309
  • 45 Seitlinger G, Scheurecker G, Högler R, Labey L, Innocenti B, Hofmann S. Tibial tubercle-posterior cruciate ligament distance: a new measurement to define the position of the tibial tubercle in patients with patellar dislocation. Am J Sports Med 2012; 40 (05) 1119-1125
  • 46 Brady JM, Rosencrans AS, Shubin Stein BE. Use of TT-PCL versus TT-TG. Curr Rev Musculoskelet Med 2018; 11 (02) 261-265
  • 47 Ward SR, Shellock FG, Terk MR, Salsich GB, Powers CM. Assessment of patellofemoral relationships using kinematic MRI: comparison between qualitative and quantitative methods. J Magn Reson Imaging 2002; 16 (01) 69-74
  • 48 Waelti S, Fischer T, Griessinger J. et al. Ultra-low-dose computed tomography for torsion measurements of the lower extremities in children and adolescents. Insights Imaging 2022; 13 (01) 118
  • 49 Kirsch MD, Fitzgerald SW, Friedman H, Rogers LF. Transient lateral patellar dislocation: diagnosis with MR imaging. AJR Am J Roentgenol 1993; 161 (01) 109-113
  • 50 Duthon VB. Acute traumatic patellar dislocation. Orthop Traumatol Surg Res 2015; 101 (01) S59-S67
  • 51 Sanders TG, Medynski MA, Feller JF, Lawhorn KW. Bone contusion patterns of the knee at MR imaging: footprint of the mechanism of injury. Radiographics 2000; 20 (Spec No): S135-S151
  • 52 Fithian DC, Paxton EW, Stone ML. et al. Epidemiology and natural history of acute patellar dislocation. Am J Sports Med 2004; 32 (05) 1114-1121
  • 53 Elias DA, White LM, Fithian DC. Acute lateral patellar dislocation at MR imaging: injury patterns of medial patellar soft-tissue restraints and osteochondral injuries of the inferomedial patella. Radiology 2002; 225 (03) 736-743
  • 54 Sanders TG, Paruchuri NB, Zlatkin MB. MRI of osteochondral defects of the lateral femoral condyle: incidence and pattern of injury after transient lateral dislocation of the patella. AJR Am J Roentgenol 2006; 187 (05) 1332-1337
  • 55 Sanders TG, Morrison WB, Singleton BA, Miller MD, Cornum KG. Medial patellofemoral ligament injury following acute transient dislocation of the patella: MR findings with surgical correlation in 14 patients. J Comput Assist Tomogr 2001; 25 (06) 957-962
  • 56 Amis AA, Firer P, Mountney J, Senavongse W, Thomas NP. Anatomy and biomechanics of the medial patellofemoral ligament. Knee 2003; 10 (03) 215-220 . Published correction appears in Knee 2004;11(1):73
  • 57 Lance E, Deutsch AL, Mink JH. Prior lateral patellar dislocation: MR imaging findings. Radiology 1993; 189 (03) 905-907
  • 58 Virolainen H, Visuri T, Kuusela T. Acute dislocation of the patella: MR findings. Radiology 1993; 189 (01) 243-246
  • 59 Sillanpää PJ, Peltola E, Mattila VM, Kiuru M, Visuri T, Pihlajamäki H. Femoral avulsion of the medial patellofemoral ligament after primary traumatic patellar dislocation predicts subsequent instability in men: a mean 7-year nonoperative follow-up study. Am J Sports Med 2009; 37 (08) 1513-1521
  • 60 Guerrero P, Li X, Patel K, Brown M, Busconi B. Medial patellofemoral ligament injury patterns and associated pathology in lateral patella dislocation: an MRI study. Sports Med Arthrosc Rehabil Ther Technol 2009; 1 (01) 17