RSS-Feed abonnieren

DOI: 10.1055/s-0044-1787761
Regional-based static and dynamic alterations in Alzheimer disease: a longitudinal study
Alterações estáticas e dinâmicas de base regional na doença de Alzheimer: um estudo longitudinal
Abstract
Background Alzheimer disease (AD) leads to cognitive decline and alters functional connectivity (FC) in key brain regions. Resting-state functional magnetic resonance imaging (rs-fMRI) assesses these changes using static-FC for overall correlation and dynamic-FC for temporal variability.
Objective In AD, there is altered FC compared to normal conditions. The present study investigates possible region-specific functional abnormalities occurring longitudinally over 1 year. Our aim is to evaluate the potential usefulness of the static and dynamic approaches in identifying biomarkers of AD progression.
Methods The study involved 15 AD and 20 healthy participants from the Alzheimer's Disease Neuroimaging Initiative 2 (ADNI2) database, tracked over 2 visits within 1 year. Using constrained-independent component analysis, we assessed FC changes across 80-regions of interest in AD over the year, examining both static and dynamic conditions.
Results The average regional FC decreased in AD compared to healthy subjects at baseline and after 1 year. The dynamic condition identifies similarities with a few additional changes in the FC compared to the static condition. In both analyses, the baseline assessment revealed reduced connectivity between the following regions: right-middle-occipital and left-superior-occipital, left-hippocampus and right-postcentral, left-lingual and left-fusiform, and precuneus and left-thalamus. Additionally, increased connectivity was found between the left-superior-occipital and precuneus regions. In the 1-year AD assessment, increased connectivity was noted between the right-superior-temporal-pole and right-insular, right-hippocampus and left-caudate, right-middle-occipital and right-superior-temporal-pole, and posterior-cingulate-cortex and middle-temporal-pole regions.
Conclusion Significant changes were observed at baseline in the frontal, occipital, and core basal-ganglia regions, progressing towards the temporal lobe and subcortical regions in the following year. After 1 year, we observed the aforementioned region-specific neurological differences in AD, significantly aiding diagnosis and disease tracking.
Resumo
Antecedentes A doença de Alzheimer (DA) leva ao declínio cognitivo e altera a conectividade funcional (CF) em regiões-chave do cérebro. A ressonância magnética funcional em estado de repouso (rs-fMRI) avalia essas alterações usando CF estática para correlação geral e CF dinâmica para variabilidade temporal.
Objetivo Na DA, há CF alterada em relação às condições normais. O presente estudo investiga possíveis anormalidades funcionais específicas da região que ocorrem longitudinalmente ao longo de um ano. Nosso objetivo é avaliar a utilidade potencial das abordagens estáticas e dinâmicas na identificação de biomarcadores da progressão da DA.
Métodos O estudo envolveu 15 participantes com DA e 20 participantes saudáveis do banco de dados da Iniciativa de Neuroimagem da Doença de Alzheimer 2 (ADNI2), rastreados em duas visitas no período de um ano. Usando análise de componentes independentes e restritos, avaliamos as mudanças de CF em 80 regiões de interesse na DA ao longo do ano, examinando condições estáticas e dinâmicas.
Resultados A CF regional média diminuiu na DA em comparação com indivíduos saudáveis no início do estudo e após um ano. A condição dinâmica identifica semelhanças com algumas alterações adicionais na CF em comparação com a condição estática. Em ambas as análises, a avaliação inicial revelou conectividade reduzida entre as seguintes regiões: occipital médio direito e occipital superior esquerdo, hipocampo esquerdo e pós-central direito, lingual esquerdo e fusiforme esquerdo, e precuneus e tálamo esquerdo. Além disso, foi encontrada maior conectividade entre as regiões occipital superior esquerda e precuneus. Na avaliação de DA de um ano, foi observada conectividade aumentada entre o polo temporal superior direito e o insular direito, o hipocampo direito e o caudado esquerdo, occipital médio direito e o polo temporal superior direito, e regiões posteriores do córtex cingulado e do polo temporal médio.
Conclusão Mudanças significativas foram observadas no início do estudo nas regiões frontal, occipital e dos gânglios basais centrais, progredindo em direção ao lobo temporal e regiões subcorticais no ano seguinte. Após um ano, observamos as diferenças neurológicas específicas da região acima mencionadas na DA, auxiliando significativamente no diagnóstico e no rastreamento da doença.
Keywords
Alzheimer Disease - Magnetic Resonance Imaging - Longitudinal Studies - Cognitive Dysfunction - BiomarkersPalavras-chave
Doença de Alzheimer - Imageamento por Ressonância Magnética - Estudos Longitudinais - Disfunção Cognitiva - BiomarcadoresAuthors' Contributions
UKC: conceptualization, data curation, investigation, methodology, visualization, and writing of the original draft; HNS: conceptualization, supervision, and validation; AA: conceptualization, review and editing.
Publikationsverlauf
Eingereicht: 08. November 2023
Angenommen: 09. April 2024
Artikel online veröffentlicht:
08. Juli 2024
© 2024. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution 4.0 International License, permitting copying and reproduction so long as the original work is given appropriate credit (https://creativecommons.org/licenses/by/4.0/)
Thieme Revinter Publicações Ltda.
Rua do Matoso 170, Rio de Janeiro, RJ, CEP 20270-135, Brazil
Kuppe Channappa Usha, Honnenahally Ningappa Suma, Abhishek Appaji. Regional-based static and dynamic alterations in Alzheimer disease: a longitudinal study. Arq Neuropsiquiatr 2024; 82: s00441787761.
DOI: 10.1055/s-0044-1787761
-
References
- 1 Gaugler J, James B, Johnson T, Scholz K, Weuve J. Alzheimer's Association. 2016 Alzheimer's disease facts and figures. Alzheimers Dement 2016; 12 (04) 459-509
- 2 Stoiljkovic M, Horvath TL, Hajós M. Therapy for Alzheimer's disease: Missing targets and functional markers?. Ageing Res Rev 2021; 68: 101318
- 3 Breijyeh Z, Karaman R. Comprehensive Review on Alzheimer's Disease: Causes and Treatment. Molecules 2020; 25 (24) 5789
- 4 Dang C, Wang Y, Li Q, Lu Y. Neuroimaging modalities in the detection of Alzheimer's disease-associated biomarkers. Psychoradiology 2023; 3: kkad009
- 5 Mousa D, Zayed N, Yassine IA. Alzheimer disease stages identification based on correlation transfer function system using resting-state functional magnetic resonance imaging. PLoS One 2022; 17 (04) e0264710
- 6 Wang Q, Chen B, Zhong X. et al. Static and dynamic functional connectivity variability of the anterior-posterior hippocampus with subjective cognitive decline. Alzheimers Res Ther 2022; 14 (01) 122 . Doi: 10.1186%2Fs13195-022-01066-9
- 7 Allen G, Barnard H, McColl R. et al. Reduced hippocampal functional connectivity in Alzheimer disease. Arch Neurol 2007; 64 (10) 1482-1487
- 8 Zhou B, Liu Y, Zhang Z. et al. Impaired functional connectivity of the thalamus in Alzheimer's disease and mild cognitive impairment: a resting-state fMRI study. Curr Alzheimer Res 2013; 10 (07) 754-766
- 9 Greene SJ, Killiany RJ, Initiative ADN. Alzheimer's Disease Neuroimaging Initiative. Subregions of the inferior parietal lobule are affected in the progression to Alzheimer's disease. Neurobiol Aging 2010; 31 (08) 1304-1311 . Doi: 10.1016%2Fj.neurobiolaging.2010.04.026
- 10 Greicius MD, Srivastava G, Reiss AL, Menon V. Default-mode network activity distinguishes Alzheimer's disease from healthy aging: evidence from functional MRI. Proc Natl Acad Sci U S A 2004; 101 (13) 4637-4642
- 11 Liu X, Chen X, Zheng W. et al. Altered functional connectivity of insular subregions in Alzheimer's disease. Front Aging Neurosci 2018; 10: 107 . Doi: 10.3389%2Ffnagi.2018.00107
- 12 Cera N, Esposito R, Cieri F, Tartaro A. Altered Cingulate Cortex Functional Connectivity in Normal Aging and Mild Cognitive Impairment. Front Neurosci 2019; 13: 857
- 13 Yao H, Liu Y, Zhou B. et al. Decreased functional connectivity of the amygdala in Alzheimer's disease revealed by resting-state fMRI. Eur J Radiol 2013; 82 (09) 1531-1538
- 14 Wang K, Liang M, Wang L. et al. Altered functional connectivity in early Alzheimer's disease: a resting-state fMRI study. Hum Brain Mapp 2007; 28 (10) 967-978
- 15 Zhao J, Du YH, Ding XT, Wang XH, Men GZ. Alteration of functional connectivity in patients with Alzheimer's disease revealed by resting-state functional magnetic resonance imaging. Neural Regen Res 2020; 15 (02) 285-292
- 16 Zhao C, Huang WJ, Feng F. et al. Abnormal characterization of dynamic functional connectivity in Alzheimer's disease. Neural Regen Res 2022; 17 (09) 2014-2021 . Doi: 10.4103%2F1673-5374.332161
- 17 Vidaurre D, Smith SM, Woolrich MW. Brain network dynamics are hierarchically organized in time. Proc Natl Acad Sci U S A 2017; 114 (48) 12827-12832
- 18 Lindquist MA, Xu Y, Nebel MB, Caffo BS. Evaluating dynamic bivariate correlations in resting-state fMRI: a comparison study and a new approach. Neuroimage 2014; 101: 531-546
- 19 Jones DT, Vemuri P, Murphy MC. et al. Non-stationarity in the “resting brain's” modular architecture. PLoS One 2012; 7 (06) e39731
- 20 Fu Z, Caprihan A, Chen J. et al. Altered static and dynamic functional network connectivity in Alzheimer's disease and subcortical ischemic vascular disease: shared and specific brain connectivity abnormalities. Hum Brain Mapp 2019; 40 (11) 3203-3221
- 21 Chao-Gan Y, Yu-Feng Z. DPARSF: A MATLAB Toolbox for “Pipeline” Data Analysis of Resting-State fMRI. Front Syst Neurosci 2010; 4: 13
- 22 Statistical parameter mapping (SPM) pipeline for resting-state fMRI... | Download Scientific Diagram. https://www.researchgate.net/figure/Statistical-parameter-mapping-SPM-pipeline-for-resting-state-fMRI-connectometry-All_fig1_353714982
- 23 Di X, Biswal BB. A functional MRI pre-processing and quality control protocol based on statistical parametric mapping (SPM) and MATLAB. Front Neuroimaging 2023; 1: 1070151
- 24 Duda M, Iraji A, Calhoun VD. Spatially Constrained ICA Enables Robust Detection of Schizophrenia from Very Short Resting-state fMRI. Annu Int Conf IEEE Eng Med Biol Soc 2022; 2022: 1867-1870
- 25 Samara Z, Evers EAT, Goulas A. et al. Human orbital and anterior medial prefrontal cortex: Intrinsic connectivity parcellation and functional organization. Brain Struct Funct 2017; 222 (07) 2941-2960
- 26 Rolls ET, Huang CC, Lin CP, Feng J, Joliot M. Automated anatomical labelling atlas 3. Neuroimage 2020; 206: 116189
- 27 Group ICA/IVA Of fMRI Toolbox Group ICA/IVA of fMRI Toolbox (GIFT) Manual.
- 28 Engels G, Vlaar A, McCoy B, Scherder E, Douw L. Dynamic Functional Connectivity and Symptoms of Parkinson's Disease: A Resting-State fMRI Study. Front Aging Neurosci 2018; 10: 388 . Doi: 10.3389%2Ffnagi.2018.00388
- 29 Yan T. et al. Functional Connectivity Changes Across the Spectrum of Subjective Cognitive Decline, Amnestic Mild Cognitive Impairment and Alzheimer's Disease. 2019;
- 30 Savva AD, Mitsis GD, Matsopoulos GK. Assessment of dynamic functional connectivity in resting-state fMRI using the sliding window technique. Brain Behav 2019; 9 (04) e01255 . Doi: 10.1002%2Fbrb3.1255
- 31 Damaraju E, Allen EA, Belger A. et al. Dynamic functional connectivity analysis reveals transient states of dysconnectivity in schizophrenia. Neuroimage Clin 2014; 5: 298-308
- 32 Alzheimer's Disease Neuroimaging Initiative 2 (ADNI2). https://www.alzheimers.gov/clinical-trials/alzheimers-disease-neuroimaging-initiative-2-adni2
- 33 Sheline YI, Raichle ME. Resting state functional connectivity in preclinical Alzheimer's disease. Biol Psychiatry 2013; 74 (05) 340-347 . Doi: 10.1016%2Fj.biopsych.2012.11.028
- 34 Euston DR, Gruber AJ, McNaughton BL. The role of medial prefrontal cortex in memory and decision making. Neuron 2012; 76 (06) 1057-1070
- 35 Jobson DD, Hase Y, Clarkson AN, Kalaria RN. The role of the medial prefrontal cortex in cognition, ageing and dementia. Brain Commun 2021; 3 (03) fcab125
- 36 Huang J, Beach P, Bozoki A, Zhu DC. Alzheimer's Disease Progressively Reduces Visual Functional Network Connectivity. J Alzheimers Dis Rep 2021; 5 (01) 549-562
- 37 Cunningham SI, Tomasi D, Volkow ND. Structural and functional connectivity of the precuneus and thalamus to the default mode network. Hum Brain Mapp 2017; 38 (02) 938-956
- 38 Liu X, Chen W, Hou H. et al. Decreased functional connectivity between the dorsal anterior cingulate cortex and lingual gyrus in Alzheimer's disease patients with depression. Behav Brain Res 2017; 326: 132-138
- 39 Yao Z, Zhang Y, Lin L, Zhou Y, Xu C, Jiang T. Alzheimer's Disease Neuroimaging Initiative. Abnormal cortical networks in mild cognitive impairment and Alzheimer's disease. PLOS Comput Biol 2010; 6 (11) e1001006
- 40 Márquez F, Yassa MA. Neuroimaging Biomarkers for Alzheimer's Disease. Mol Neurodegener 2019; 14 (01) 21
- 41 Cai S, Chong T, Zhang Y. et al; Alzheimer's Disease Neuroimaging Initiative. Altered Functional Connectivity of Fusiform Gyrus in Subjects with Amnestic Mild Cognitive Impairment: A Resting-State fMRI Study. Front Hum Neurosci 2015; 9: 471
- 42 Xue J, Guo H, Gao Y. et al. Altered Directed Functional Connectivity of the Hippocampus in Mild Cognitive Impairment and Alzheimer's Disease: A Resting-State fMRI Study. Front Aging Neurosci 2019; 11: 326
- 43 Feng Q, Wang M, Song Q. et al. Correlation between hippocampus MRI radiomic features and resting-state intrahippocampal functional connectivity in Alzheimer's disease. Front Neurosci 2019; 13: 435
- 44 Moon Y, Moon WJ, Han SH. Pathomechanisms of atrophy in insular cortex in Alzheimer's disease. Am J Alzheimers Dis Other Demen 2015; Aug; 30 (05) 497-502
- 45 Penalba-Sánchez L, Oliveira-Silva P, Sumich AL, Cifre I. Increased functional connectivity patterns in mild Alzheimer's disease: A rsfMRI study. Front Aging Neurosci 2023; 14: 1037347
- 46 Harasty JA, Halliday GM, Kril JJ, Code C. Specific temporoparietal gyral atrophy reflects the pattern of language dissolution in Alzheimer's disease. Brain 1999; 122 (Pt 4): 675-686
- 47 The role of the posterior cingulate cortex in cognition and disease - PMC. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3891440/
- 48 Zhang J, Guo Z, Liu X. et al. Abnormal functional connectivity of the posterior cingulate cortex is associated with depressive symptoms in patients with Alzheimer's disease. Neuropsychiatr Dis Treat 2017; 13: 2589-2598
- 49 Frisoni GB, Testa C, Sabattoli F, Beltramello A, Soininen H, Laakso MP. Structural correlates of early and late onset Alzheimer's disease: voxel based morphometric study. J Neurol Neurosurg Psychiatry 2005; 76 (01) 112-114
- 50 Rao YL, Ganaraja B, Murlimanju BV, Joy T, Krishnamurthy A, Agrawal A. Hippocampus and its involvement in Alzheimer's disease: a review. 3 Biotech 2022; 12 (02) 55 . Doi: 10.1007%2Fs13205-022-03123-4