CC BY 4.0 · Arq Neuropsiquiatr 2024; 82(09): s00441789225
DOI: 10.1055/s-0044-1789225
View and Review

Contributions of neuroimaging in central poststroke pain: a review

Contribuições da neuroimagem na dor central pós-acidente vascular encefálico: uma revisão
1   Universidade de São Paulo, Faculdade de Medicina, Departamento de Radiologia, São Paulo SP, Brazil.
,
2   Universidade de São Paulo, Faculdade de Medicina, Departamento de Neurologia, São Paulo SP, Brazil.
,
2   Universidade de São Paulo, Faculdade de Medicina, Departamento de Neurologia, São Paulo SP, Brazil.
,
1   Universidade de São Paulo, Faculdade de Medicina, Departamento de Radiologia, São Paulo SP, Brazil.
› Institutsangaben

Abstract

Background Central neuropathic poststroke pain (CNPSP) affects up to 12% of patients with stroke in general and up to 18% of patients with sensory deficits. This pain syndrome is often incapacitating and refractory to treatment. Brain computed tomography and magnetic resonance imaging (MRI) are widely used methods in the evaluation of CNPSP.

Objective The present study aims to review the role of neuroimaging methods in CNPSP.

Methods We performed a literature review of the main clinical aspects of CNPSP and the contribution of neuroimaging methods to study its pathophysiology, commonly damaged brain sites, and possible differential diagnoses. Lastly, we briefly mention how neuroimaging can contribute to the non-pharmacological CNPSP treatment. Additionally, we used a series of MRI from our institution to illustrate this review.

Results Imaging has been used to explain CNPSP pathogenesis based on spinothalamic pathway damage and connectome dysfunction. Imaging locations associated with CNPSP include the brainstem (mainly the dorsolateral medulla), thalamus (especially the ventral posterolateral/ventral posteromedial nuclei), cortical areas such as the posterior insula and the parietal operculum, and, more recently, the thalamocortical white matter in the posterior limb of the internal capsule. Imaging also brings the prospect of helping search for new targets for non-pharmacological treatments for CNPSP. Other neuropathic pain causes identified by imaging include syringomyelia, multiple sclerosis, and herniated intervertebral disc.

Conclusion Imaging is a valuable tool in the complimentary evaluation of CNPSP patients in clinical and research scenarios.

Resumo

Antecedentes A dor neuropática central pós-acidente vascular cerebral (DNPAVC) afeta até 12% dos pacientes com AVC em geral e até 18% dos pacientes com déficits sensoriais. Essa síndrome dolorosa costuma ser incapacitante e refratária ao tratamento. A tomografia computadorizada e a ressonância magnética do cérebro são métodos amplamente utilizados na avaliação da DNPAVC.

Objetivo Este estudo tem como objetivo revisar o papel dos métodos de neuroimagem na DNPAVC.

Métodos Realizamos uma revisão da literatura sobre os principais aspectos clínicos da DNPAVC e a contribuição dos métodos de neuroimagem para estudar a fisiopatologia da DNPAVC, locais cerebrais comumente lesados na DNPAVC e possíveis diagnósticos diferenciais. Por fim, mencionamos brevemente como a neuroimagem pode contribuir no tratamento não farmacológico da DNPAVC. Além disso, utilizamos uma série de imagens de ressonância magnética da nossa instituição para ilustrar esta revisão.

Resultados Os exames de imagem têm sido usados para explicar a patogênese da DNPAVC com base no dano da via espinotalâmica e na disfunção do conectoma. Os locais de imagem associados à DNPAVC incluem o tronco cerebral (principalmente o bulbo dorsolateral), o tálamo (especialmente os núcleos ventral posterolateral/ventral posteromedial), áreas corticais como a ínsula posterior e o opérculo parietal e, mais recentemente, a substância branca tálamo-cortical no membro posterior da cápsula interna. Os exames de imagem também trazem a perspectiva de auxiliar na busca de novos alvos para tratamentos não farmacológicos para DNPAVC. Outras causas de dor neuropática identificadas por exames de imagem incluem siringomielia, esclerose múltipla e hérnia de disco intervertebral.

Conclusão Os exames de imagem são uma ferramenta valiosa na avaliação complementar de pacientes com DNPAVC em cenários clínicos e de pesquisa.

Editor-in-Chief

Ayrton Roberto Massaro.


Associate Editor

Antonio José da Rocha.


Authors' Contributions

MDL: conceptualization, data curation, formal analysis, methodology, resources, validation, visualization, writing – original draft, and writing – review & editing; LMB: conceptualization, formal analysis, writing – original draft, and writing – review & editing; DCA: conceptualization, formal analysis, investigation, methodology, project administration, resources, supervision, visualization, writing – original draft, and writing – review & editing; LTL: conceptualization, data curation, formal analysis, funding acquisition, investigation, methodology, project administration, resources, supervision, validation, writing – original draft, and writing – review & editing.




Publikationsverlauf

Eingereicht: 06. März 2024

Angenommen: 09. Juni 2024

Artikel online veröffentlicht:
31. August 2024

© 2024. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution 4.0 International License, permitting copying and reproduction so long as the original work is given appropriate credit (https://creativecommons.org/licenses/by/4.0/)

Thieme Revinter Publicações Ltda.
Rua do Matoso 170, Rio de Janeiro, RJ, CEP 20270-135, Brazil

Bibliographical Record
Marcelo Delboni Lemos, Luciana Mendonça Barbosa, Daniel Ciampi de Andrade, Leandro Tavares Lucato. Contributions of neuroimaging in central poststroke pain: a review. Arq Neuropsiquiatr 2024; 82: s00441789225.
DOI: 10.1055/s-0044-1789225
 
  • References

  • 1 Pu L, Wang L, Zhang R, Zhao T, Jiang Y, Han L. Projected Global Trends in Ischemic Stroke Incidence, Deaths and Disability-Adjusted Life Years From 2020 to 2030. Stroke 2023; 54 (05) 1330-1339
  • 2 Klit H, Finnerup NB, Jensen TS. Central post-stroke pain: clinical characteristics, pathophysiology, and management. Lancet Neurol 2009; 8 (09) 857-868
  • 3 Klit H, Finnerup NB, Overvad K, Andersen G, Jensen TS. Pain following stroke: a population-based follow-up study. PLoS One 2011; 6 (11) e27607
  • 4 Barbosa LM, da Silva VA, de Lima Rodrigues AL. et al. Dissecting central post-stroke pain: a controlled symptom-psychophysical characterization. Brain Commun 2022; 4 (03) fcac090
  • 5 Singer J, Conigliaro A, Spina E, Law SW, Levine SR. Central poststroke pain: A systematic review. Int J Stroke 2017; 12 (04) 343-355
  • 6 Gandolfi M, Donisi V, Battista S. et al. Health-related quality of life and psychological features in post-stroke patients with chronic pain: A cross-sectional study in the neuro-rehabilitation context of care. Int J Environ Res Public Health 2021; 18 (06) 3089
  • 7 Guédon A, Thiebaut JB, Benichi S, Mikol J, Moxham B, Plaisant O. Dejerine-Roussy syndrome: Historical cases. Neurology 2019; 93 (14) 624-629
  • 8 Foix Ch, Chavany JALM. Syndrome pseudo-thalamique d'origine pariétale: Lésion de l'artère du sillon interpariétal (Pa P1 P2 antérieures, petit territoire insulo-capsulaire). Rev Neurol (Paris) 1927; 35: 68-76
  • 9 Michelsen J. Subjective disturbances of the sense of pain from lesions of the cerebral cortex. Res Publ Assoc Res Nerv Ment Dis 1943; 23: 86-99
  • 10 Garcia-Larrea L. The posterior insular-opercular region and the search of a primary cortex for pain. Neurophysiol Clin 2012; 42 (05) 299-313
  • 11 Krause T, Brunecker P, Pittl S. et al. Thalamic sensory strokes with and without pain: differences in lesion patterns in the ventral posterior thalamus. J Neurol Neurosurg Psychiatry 2012; 83 (08) 776-784
  • 12 Vartiainen N, Perchet C, Magnin M. et al. Thalamic pain: anatomical and physiological indices of prediction. Brain 2016; 139 (Pt 3): 708-722
  • 13 Sprenger T, Seifert CL, Valet M. et al. Assessing the risk of central post-stroke pain of thalamic origin by lesion mapping. Brain 2012; 135 (Pt 8): 2536-2545
  • 14 Czap AL, Sheth SA. Overview of Imaging Modalities in Stroke. Neurology 2021; 97 (20, Suppl 2) S42-S51
  • 15 Adam G, Ferrier M, Patsoura S. et al. Magnetic resonance imaging of arterial stroke mimics: a pictorial review. Insights Imaging 2018; 9 (05) 815-831
  • 16 Davis KD, Flor H, Greely HT. et al. Brain imaging tests for chronic pain: medical, legal and ethical issues and recommendations. Nat Rev Neurol 2017; 13 (10) 624-638
  • 17 Paolucci S, Iosa M, Toni D. et al; Neuropathic pain special interest group of the Italian Neurological Society. Prevalence and time course of post-stroke pain: A multicenter prospective hospital-based study. Pain Med 2016; 17 (05) 924-930
  • 18 Freynhagen R, Parada HA, Calderon-Ospina CA. et al. Current understanding of the mixed pain concept: a brief narrative review. Curr Med Res Opin 2019; 35 (06) 1011-1018
  • 19 Finnerup NB, Haroutounian S, Kamerman P. et al. Neuropathic pain: an updated grading system for research and clinical practice. Pain 2016; 157 (08) 1599-1606
  • 20 de Oliveira RAA, de Andrade DC, Machado AGG, Teixeira MJ. Central poststroke pain: somatosensory abnormalities and the presence of associated myofascial pain syndrome. BMC Neurol 2012; 12: 89
  • 21 O'Donnell MJ, Diener HC, Sacco RL, Panju AA, Vinisko R, Yusuf S. PRoFESS Investigators. Chronic pain syndromes after ischemic stroke: PRoFESS trial. Stroke 2013; 44 (05) 1238-1243
  • 22 Harriott AM, Karakaya F, Ayata C. Headache after ischemic stroke: A systematic review and meta-analysis. Neurology 2020; 94 (01) e75-e86
  • 23 Treede RD, Jensen TS, Campbell JN. et al. Neuropathic pain: redefinition and a grading system for clinical and research purposes. Neurology 2008; 70 (18) 1630-1635
  • 24 Gonzalez-Hermosillo D-C, Gonzalez-Hermosillo L-M, Villaseñor-Almaraz M. et al. Current concepts of pain pathways: a brief review of anatomy, physiology, and medical imaging. Curr Med Imaging 2023; 20
  • 25 Craig AD. How do you feel? Interoception: the sense of the physiological condition of the body. Nat Rev Neurosci 2002; 3 (08) 655-666
  • 26 Bastuji H, Frot M, Perchet C, Hagiwara K, Garcia-Larrea L. Convergence of sensory and limbic noxious input into the anterior insula and the emergence of pain from nociception. Sci Rep 2018; 8 (01) 13360
  • 27 Apkarian AV, Baliki MN, Geha PY. Towards a theory of chronic pain. Prog Neurobiol 2009; 87 (02) 81-97
  • 28 Betancur DFA, Tarragó MDGL, Torres ILDS, Fregni F, Caumo W. Central Post-Stroke Pain: An Integrative Review of Somatotopic Damage, Clinical Symptoms, and Neurophysiological Measures. Front Neurol 2021; 12 (August): 678198
  • 29 Bowsher D, Leijon G, Thuomas K-A. Central poststroke pain: correlation of MRI with clinical pain characteristics and sensory abnormalities. Neurology 1998; 51 (05) 1352-1358
  • 30 Craig AD, Bushnell MC. The thermal grill illusion: unmasking the burn of cold pain. Science 1994; 265 (5169): 252-255
  • 31 Farrell MJ, Laird AR, Egan GF. Brain activity associated with painfully hot stimuli applied to the upper limb: A meta-analysis. In: Human Brain Mapping. Vol 25. 2005.
  • 32 Craig AD, Reiman EM, Evans A, Bushnell MC. Functional imaging of an illusion of pain. Nature 1996; 384 (6606): 258-260
  • 33 Ducreux D, Attal N, Parker F, Bouhassira D. Mechanisms of central neuropathic pain: a combined psychophysical and fMRI study in syringomyelia. Brain 2006; 129 (Pt 4): 963-976
  • 34 Elias GJB, De Vloo P, Germann J. et al. Mapping the network underpinnings of central poststroke pain and analgesic neuromodulation. Pain 2020; 161 (12) 2805-2819
  • 35 Garcia-Larrea L, Peyron R. Pain matrices and neuropathic pain matrices: A review. In: Pain. Vol 154. 2013.
  • 36 Barbosa LM, Valerio F, da Silva VA. et al. Corticomotor excitability is altered in central neuropathic pain compared with non-neuropathic pain or pain-free patients. Neurophysiol Clin 2023; 53 (03) 102845
  • 37 Nagasaka K, Nemoto K, Takashima I, Bando D, Matsuda K, Higo N. Structural Plastic Changes of Cortical Gray Matter Revealed by Voxel-Based Morphometry and Histological Analyses in a Monkey Model of Central Post-Stroke Pain. Cereb Cortex 2021; 31 (10) 4439-4449
  • 38 Krause T, Asseyer S, Taskin B. et al. The Cortical Signature of Central Poststroke Pain: Gray Matter Decreases in Somatosensory, Insular, and Prefrontal Cortices. Cereb Cortex 2016; 26 (01) 80-88
  • 39 Peyron R, García-Larrea L, Grégoire MC. et al. Parietal and cingulate processes in central pain. A combined positron emission tomography (PET) and functional magnetic resonance imaging (fMRI) study of an unusual case. Pain 2000; 84 (01) 77-87
  • 40 Gopalakrishnan R, Burgess RC, Lempka SF, Gale JT, Floden DP, Machado AG. Pain anticipatory phenomena in patients with central poststroke pain: a magnetoencephalography study. J Neurophysiol 2016; 116 (03) 1387-1395
  • 41 Delboni Lemos M, Faillenot I, Tavares Lucato L. et al. Dissecting neuropathic from poststroke pain: the white matter within. Pain 2022; 163 (04) 765-778
  • 42 Rosenberg DS, Mauguière F, Catenoix H, Faillenot I, Magnin M. Reciprocal thalamocortical connectivity of the medial pulvinar: a depth stimulation and evoked potential study in human brain. Cereb Cortex 2009; 19 (06) 1462-1473
  • 43 Crandall SR, Cruikshank SJ, Connors BW. A corticothalamic switch: controlling the thalamus with dynamic synapses. Neuron 2015; 86 (03) 768-782
  • 44 Dehaene S, Changeux JP. Experimental and theoretical approaches to conscious processing. Neuron 2011; 70 (02) 200-227
  • 45 Jones EG. Thalamocortical dysrhythmia and chronic pain. Pain 2010; 150 (01) 4-5
  • 46 Barrett LF, Simmons WK. Interoceptive predictions in the brain. Nat Rev Neurosci 2015; 16 (07) 419-429
  • 47 Peyron R, García-Larrea L, Grégoire MC. et al. Haemodynamic brain responses to acute pain in humans: sensory and attentional networks. Brain 1999; 122 (Pt 9): 1765-1780
  • 48 Peyron R, Laurent B, García-Larrea L. Functional imaging of brain responses to pain. A review and meta-analysis (2000). Neurophysiol Clin 2000; 30 (05) 263-288
  • 49 Cappe C, Morel A, Barone P, Rouiller EM. The thalamocortical projection systems in primate: an anatomical support for multisensory and sensorimotor interplay. Cereb Cortex 2009; 19 (09) 2025-2037
  • 50 MacGowan DJL, Janal MN, Clark WC. et al. Central poststroke pain and Wallenberg's lateral medullary infarction: frequency, character, and determinants in 63 patients. Neurology 1997; 49 (01) 120-125
  • 51 Kim JS, Choi-Kwon S. Sensory sequelae of medullary infarction: differences between lateral and medial medullary syndrome. Stroke 1999; 30 (12) 2697-2703
  • 52 Montes C, Magnin M, Maarrawi J. et al. Thalamic thermo-algesic transmission: ventral posterior (VP) complex versus VMpo in the light of a thalamic infarct with central pain. Pain 2005; 113 (1-2): 223-232
  • 53 Getz B. The termination of spinothalamic fibres in the cat as studied by the method of terminal degeneration. Acta Anat (Basel) 1952; 16 (03)
  • 54 Burton H, Jones EG. The posterior thalamic region and its cortical projection in New World and Old World monkeys. J Comp Neurol 1976; 168 (02) 249-301
  • 55 Craig AD. Distribution of trigeminothalamic and spinothalamic lamina I terminations in the macaque monkey. J Comp Neurol 2004; 477 (02) 119-148
  • 56 Blomqvist A, Zhang ET, Craig AD. Cytoarchitectonic and immunohistochemical characterization of a specific pain and temperature relay, the posterior portion of the ventral medial nucleus, in the human thalamus. Brain 2000; 123 (Pt 3): 601-619
  • 57 Graziano A, Jones EG. Widespread thalamic terminations of fibers arising in the superficial medullary dorsal horn of monkeys and their relation to calbindin immunoreactivity. J Neurosci 2004; 24 (01) 248-256
  • 58 Dum RP, Levinthal DJ, Strick PL. The spinothalamic system targets motor and sensory areas in the cerebral cortex of monkeys. J Neurosci 2009; 29 (45) 14223-14235
  • 59 Wager TD, Atlas LY, Lindquist MA, Roy M, Woo C-W, Kross E. An fMRI-based neurologic signature of physical pain. N Engl J Med 2013; 368 (15) 1388-1397
  • 60 Martucci KT, Mackey SC. Neuroimaging of Pain: Human Evidence and Clinical Relevance of Central Nervous System Processes and Modulation. Anesthesiology 2018; 128 (06) 1241-1254
  • 61 Stevens FL, Hurley RA, Taber KH. Anterior cingulate cortex: unique role in cognition and emotion. J Neuropsychiatry Clin Neurosci 2011; 23 (02) 121-125
  • 62 Kim JS. Central post-stroke pain or paresthesia in lenticulocapsular hemorrhages. Neurology 2003; 61 (05) 679-682
  • 63 Ghaziri J, Tucholka A, Girard G. et al. Subcortical structural connectivity of insular subregions. Sci Rep 2018; 8 (01) 8596
  • 64 Landerholm ÅH, Hansson PT. Mechanisms of dynamic mechanical allodynia and dysesthesia in patients with peripheral and central neuropathic pain. Eur J Pain 2011; 15 (05) 498-503
  • 65 Catani M, ffytche DH. The rises and falls of disconnection syndromes. Brain 2005; 128 (Pt 10): 2224-2239
  • 66 Lee S, Zhao X, Hatch M, Chun S, Chang E. Central neuropathic pain in spinal cord injury. Crit Rev Phys Rehabil Med 2013; 25 (3-4): 159-172
  • 67 Seki T, Hamauchi S, Yamazaki M, Hida K, Yano S, Houkin K. Investigation of the neuropathic pain caused by syringomyelia associated with Chiari I malformation. Asian Spine J 2019; 13 (04) 648-653
  • 68 Hatem SM, Attal N, Ducreux D. et al. Clinical, functional and structural determinants of central pain in syringomyelia. Brain 2010; 133 (11) 3409-3422
  • 69 Racke MK, Frohman EM, Frohman T. Pain in Multiple Sclerosis: Understanding Pathophysiology, Diagnosis, and Management Through Clinical Vignettes. Front Neurol 2022; 12: 799698
  • 70 Seixas D, Foley P, Palace J, Lima D, Ramos I, Tracey I. Pain in multiple sclerosis: a systematic review of neuroimaging studies. Neuroimage Clin 2014; 5: 322-331
  • 71 Lim TH, Choi SI, Yoo JI. et al. Thalamic pain misdiagnosed as cervical disc herniation. Korean J Pain 2016; 29 (02) 119-122
  • 72 Oliveira RAA, Baptista AF, Sá KN. et al; Clinicians participants of the panel of experts recommended by the Brazilian Academy of Neurology. Pharmacological treatment of central neuropathic pain: consensus of the Brazilian Academy of Neurology. Arq Neuropsiquiatr 2020; 78 (11) 741-752
  • 73 Hosomi K, Seymour B, Saitoh Y. Modulating the pain network–neurostimulation for central poststroke pain. Nat Rev Neurol 2015; 11 (05) 290-299
  • 74 O'Brien AT, Amorim R, Rushmore RJ. et al. Motor cortex neurostimulation technologies for chronic post-stroke pain: Implications of tissue damage on stimulation currents. Front Hum Neurosci 2016; 10: 545
  • 75 Ward M, Mammis A. Deep brain stimulation for the treatment of dejerine-roussy syndrome. Stereotact Funct Neurosurg 2017; 95 (05) 298-306
  • 76 Morishita T, Inoue T. Brain stimulation therapy for central post-stroke pain from a perspective of interhemispheric neural network remodeling. Front Hum Neurosci 2016; 10: 166
  • 77 Calabrese E. Diffusion tractography in deep brain stimulation surgery: A review. Front Neuroanat 2016; 10 (MAY): 45
  • 78 Hosomi K, Kishima H, Oshino S. et al. Cortical excitability changes after high-frequency repetitive transcranial magnetic stimulation for central poststroke pain. Pain 2013; 154 (08) 1352-1357
  • 79 Pan LJ, Zhu HQ, Zhang XA, Wang XQ. The mechanism and effect of repetitive transcranial magnetic stimulation for post-stroke pain. Front Mol Neurosci 2023; 15: 1091402