RSS-Feed abonnieren

DOI: 10.1055/s-0044-1800724
Advancements in Precision Prevention: Top Bioinformatics and Translational Informatics Papers of 2023
Authors

Summary
Objective: To identify and summarize the top bioinformatics and translational informatics (BTI) papers published in 2023, focusing on the area of precision prevention.
Methods: We conducted a literature search to identify the top papers published in 2023 in the field of BTI. Candidate papers from the search were reviewed by the section co-editors and a panel of external reviewers to select the top three papers for this year.
Results: Our literature search returned a total of 550 candidate papers, from which we identified our top 10 papers for external review. The papers were evaluated based on their novelty, significance, and quality. After rigorous review, three papers were selected as the top BTI papers for 2023. These papers showcased innovative approaches in leveraging machine learning models, integrating multi-omics data, and developing new experimental techniques. Highlights include advancements in single-cell genomics, dynamic surveillance systems, and multimodal data integration.
Conclusions: We found several trends in the ten candidate BTI papers, including the refinement of machine learning models, the expansion of diverse biological datasets, and the development of scalable experimental techniques. These trends reflect the growing importance of bioinformatics and translational informatics as a cornerstone for improving predictive and preventative healthcare measures.
Publikationsverlauf
Artikel online veröffentlicht:
08. April 2025
© 2024. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting unrestricted use, distribution, and reproduction so long as the original work is properly cited. (https://creativecommons.org/licenses/by/4.0/)
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 Fonseca MA, Haro M, Wright KN, Lin X, Abbasi F, Sun J, et al. Single-cell transcriptomic analysis of endometriosis. Nat Genet. 2023 Feb;55(2):255-267. doi: 10.1038/s41588-022-01254-1.
- 2 Johnson D, Goodman R, Patrinely J, Stone C, Zimmerman E, Donald R, et al. Assessing the accuracy and reliability of AI-generated medical responses: an evaluation of the Chat-GPT model. Res Sq [Preprint]. 2023 Feb 28:rs.3.rs-2566942. doi: 10.21203/rs.3.rs-2566942/v1.
- 3 Walker JT, Saunders DC, Rai V, Chen H-H, Orchard P, Dai C, et al. Genetic risk converges on regulatory networks mediating early type 2 diabetes. Nature. 2023 Dec;624(7992):621-629. doi: 10.1038/s41586-023-06693-2.
- 4 Clark IC, Fontanez KM, Meltzer RH, Xue Y, Hayford C, May-Zhang A, et al. Microfluidics-free single-cell genomics with templated emulsification. Nat Biotechnol. 2023 Nov;41(11):1557-1566. doi: 10.1038/s41587-023-01685-z.
- 5 Morris JA, Caragine C, Daniloski Z, Domingo J, Barry T, Lu L, et al. Discovery of target genes and pathways at GWAS loci by pooled single-cell CRISPR screens. Science. 2023 May 19;380(6646):eadh7699. doi: 10.1126/science.adh7699.
- 6 Theodoris CV, Xiao L, Chopra A, Chaffin MD, Al Sayed ZR, Hill MC, et al. Transfer learning enables predictions in network biology. Nature. 2023 Jun;618(7965):616-624. doi: 10.1038/s41586-023-06139-9.
- 7 De Donno C, Hediyeh-Zadeh S, Moinfar AA, Wagenstetter M, Zappia L, Lotfollahi M, et al. Population-level integration of single-cell datasets enables multi-scale analysis across samples. Nat Methods. 2023 Nov;20(11):1683-1692. doi: 10.1038/s41592-023-02035-2.
- 8 Ranjbari S, Arslanturk S. Integration of incomplete multi-omics data using Knowledge Distillation and Supervised Variational Autoencoders for disease progression prediction. J Biomed Inform. 2023 Nov;147:104512. doi: 10.1016/j.jbi.2023.104512.
- 9 Bhattacharya A, Vo DD, Jops C, Kim M, Wen C, Hervoso JL, et al. Isoform-level transcriptome-wide association uncovers genetic risk mechanisms for neuropsychiatric disorders in the human brain. Nat Genet. 2023 Dec;55(12):2117-2128. doi: 10.1038/s41588-023-01560-2.
- 10 Li Y, Guo Z, Gao X, Wang G. MMCL-CDR: enhancing cancer drug response prediction with multi-omics and morphology images contrastive representation learning. Bioinformatics. 2023 Dec 1;39(12):btad734. doi: 10.1093/bioinformatics/btad734.
- 11 Jeong D, Koo B, Oh M, Kim T-B, Kim S. GOAT: Gene-level biomarker discovery from multi-Omics data using graph ATtention neural network for eosinophilic asthma subtype. Bioinformatics. 2023 Oct 3;39(10):btad582. doi: 10.1093/bioinformatics/btad582.
- 12 Gainza P, Wehrle S, Van Hall-Beauvais A, Marchand A, Scheck A, Harteveld Z, et al. De novo design of protein interactions with learned surface fingerprints. Nature. 2023 May;617(7959):176-184. doi: 10.1038/s41586-023-05993-x.
- 13 Keough KC, Whalen S, Inoue F, Przytycki PF, Fair T, Deng C, et al. Three-dimensional genome rewiring in loci with human accelerated regions. Science. 2023 Apr 28;380(6643):eabm1696. doi: 10.1126/science.abm1696.
- 14 Gangavarapu K, Latif AA, Mullen JL, Alkuzweny M, Hufbauer E, Tsueng G, et al. Outbreak. info genomic reports: scalable and dynamic surveillance of SARS-CoV-2 variants and mutations. Nat Methods. 2023 Apr;20(4):512-522. doi: 10.1038/s41592-023-01769-3.
- 15 Liao W-W, Asri M, Ebler J, Doerr D, Haukness M, Hickey G, et al. A draft human pangenome reference. Nature. 2023 May;617(7960):312-324. doi: 10.1038/s41586-023-05896-x.