CC BY 4.0 · Yearb Med Inform 2024; 33(01): 090-098
DOI: 10.1055/s-0044-1800726
Section 2: Cancer Informatics
Survey

A Narrative Review on the Application of Large Language Models to Support Cancer Care and Research

Ryzen Benson
1   Department of Radiation Oncology, University of California, San Francisco, San Francisco, California
2   Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, California
,
Marianna Elia
1   Department of Radiation Oncology, University of California, San Francisco, San Francisco, California
2   Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, California
,
Benjamin Hyams
1   Department of Radiation Oncology, University of California, San Francisco, San Francisco, California
2   Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, California
3   School of Medicine, University of California, San Francisco, San Francisco, California
,
Ji Hyun Chang
1   Department of Radiation Oncology, University of California, San Francisco, San Francisco, California
2   Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, California
4   Department of Radiation Oncology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
,
Julian C. Hong
1   Department of Radiation Oncology, University of California, San Francisco, San Francisco, California
2   Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, California
5   UCSF UC Berkeley Joint Program in Computational Precision Health (CPH), San Francisco, CA
› Institutsangaben

Summary

Objectives: The emergence of large language models has resulted in a significant shift in informatics research and carries promise in clinical cancer care. Here we provide a narrative review of the recent use of large language models (LLMs) to support cancer care, prevention, and research.

Methods: We performed a search of the Scopus database for studies on the application of bidirectional encoder representations from transformers (BERT) and generative-pretrained transformer (GPT) LLMs in cancer care published between the start of 2021 and the end of 2023. We present salient and impactful papers related to each of these themes.

Results: Studies identified focused on aspects of clinical decision support (CDS), cancer education, and support for research activities. The use of LLMs for CDS primarily focused on aspects of treatment and screening planning, treatment response, and the management of adverse events. Studies using LLMs for cancer education typically focused on question-answering, assessing cancer myths and misconceptions, and text summarization and simplification. Finally, studies using LLMs to support research activities focused on scientific writing and idea generation, cohort identification and extraction, clinical data processing, and NLP-centric tasks.

Conclusions: The application of LLMs in cancer care has shown promise across a variety of diverse use cases. Future research should utilize quantitative metrics, qualitative insights, and user insights in the development and evaluation of LLM-based cancer care tools. The development of open-source LLMs for use in cancer care research and activities should also be a priority.



Publikationsverlauf

Artikel online veröffentlicht:
08. April 2025

© 2024. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting unrestricted use, distribution, and reproduction so long as the original work is properly cited. (https://creativecommons.org/licenses/by/4.0/)

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 R.L. Siegel, A.N. Giaquinto, A. Jemal, Cancer statistics, 2024, CA: A Cancer Journal for Clinicians 74 (2024) 12–49. https://doi.org/10.3322/caac.21820.
  • 2 N. Keshava, T.S. Toh, H. Yuan, B. Yang, M.P. Menden, D. Wang, Defining subpopulations of differential drug response to reveal novel target populations, Npj Syst Biol Appl 5 (2019) 1–11. https://doi.org/10.1038/s41540-019-0113-4.
  • 3 L.F. Forrest, J. Adams, H. Wareham, G. Rubin, M. White, Socioeconomic Inequalities in Lung Cancer Treatment: Systematic Review and Meta-Analysis, PLOS Medicine 10 (2013) e1001376. https://doi.org/10.1371/journal.pmed.1001376.
  • 4 K.R. Yabroff, J. Lund, D. Kepka, A. Mariotto, Economic Burden of Cancer in the US: Estimates, Projections, and Future Research, Cancer Epidemiol Biomarkers Prev 20 (2011) 2006–2014. https://doi.org/10.1158/1055-9965.EPI-11-0650.
  • 5 K.R. Yabroff, A. Mariotto, F. Tangka, J. Zhao, F. Islami, H. Sung, R.L. Sherman, S.J. Henley, A. Jemal, E.M. Ward, Annual Report to the Nation on the Status of Cancer, Part 2: Patient Economic Burden Associated With Cancer Care, JNCI: Journal of the National Cancer Institute 113 (2021) 1670–1682. https://doi.org/10.1093/jnci/djab192.
  • 6 M. Gholipour, R. Khajouei, P. Amiri, S. Hajesmaeel Gohari, L. Ahmadian, Extracting cancer concepts from clinical notes using natural language processing: a systematic review, BMC Bioinformatics 24 (2023) 405. https://doi.org/10.1186/s12859-023-05480-0.
  • 7 W. Yim, M. Yetisgen, W.P. Harris, S.W. Kwan, Natural Language Processing in Oncology: A Review, JAMA Oncology 2 (2016) 797–804. https://doi.org/10.1001/jamaoncol.2016.0213.
  • 8 L. Wang, S. Fu, A. Wen, X. Ruan, H. He, S. Liu, S. Moon, M. Mai, I.B. Riaz, N. Wang, P. Yang, H. Xu, J.L. Warner, H. Liu, Assessment of Electronic Health Record for Cancer Research and Patient Care Through a Scoping Review of Cancer Natural Language Processing, JCO Clin Cancer Inform (2022) e2200006. https://doi.org/10.1200/CCI.22.00006.
  • 9 J. Devlin, M.-W. Chang, K. Lee, K. Toutanova, BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding, (2019). http://arxiv.org/abs/1810.04805 (accessed September 27, 2023).
  • 10 A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A.N. Gomez, L. Kaiser, I. Polosukhin, Attention Is All You Need, (2023). http://arxiv.org/abs/1706.03762 (accessed January 28, 2024).
  • 11 A. Radford, K. Narasimhan, T. Salimans, I. Sutskever, Improving Language Understanding by Generative Pre-Training, (n.d.).
  • 12 T.B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal, A. Neelakantan, P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-Voss, G. Krueger, T. Henighan, R. Child, A. Ramesh, D.M. Ziegler, J. Wu, C. Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin, S. Gray, B. Chess, J. Clark, C. Berner, S. McCandlish, A. Radford, I. Sutskever, D. Amodei, Language Models are Few-Shot Learners, (2020). http://arxiv.org/abs/2005.14165 (accessed December 2, 2023).
  • 13 S. Lukac, D. Dayan, V. Fink, E. Leinert, A. Hartkopf, K. Veselinovic, W. Janni, B. Rack, K. Pfister, B. Heitmeir, F. Ebner, Evaluating ChatGPT as an adjunct for the multidisciplinary tumor board decision-making in primary breast cancer cases, Arch Gynecol Obstet 308 (2023) 1831–1844. https://doi.org/10.1007/s00404-023-07130-5.
  • 14 S. Chen, B.H. Kann, M.B. Foote, H.J.W.L. Aerts, G.K. Savova, R.H. Mak, D.S. Bitterman, Use of Artificial Intelligence Chatbots for Cancer Treatment Information, JAMA Oncol 9 (2023) 1459. https://doi.org/10.1001/jamaoncol.2023.2954.
  • 15 S. Griewing, N. Gremke, U. Wagner, M. Lingenfelder, S. Kuhn, J. Boekhoff, Challenging ChatGPT 3.5 in Senology—An Assessment of Concordance with Breast Cancer Tumor Board Decision Making, Journal of Personalized Medicine 13 (2023). https://doi.org/10.3390/jpm13101502.
  • 16 M. Benary, X.D. Wang, M. Schmidt, D. Soll, G. Hilfenhaus, M. Nassir, C. Sigler, M. Knödler, U. Keller, D. Beule, U. Keilholz, U. Leser, D.T. Rieke, Leveraging Large Language Models for Decision Support in Personalized Oncology, JAMA Netw Open 6 (2023) e2343689. https://doi.org/10.1001/jamanetworkopen.2023.43689.
  • 17 A. Rao, J. Kim, M. Kamineni, M. Pang, W. Lie, K.J. Dreyer, M.D. Succi, Evaluating GPT as an Adjunct for Radiologic Decision Making: GPT-4 Versus GPT-3.5 in a Breast Imaging Pilot, Journal of the American College of Radiology 20 (2023) 990–997. https://doi.org/10.1016/j.jacr.2023.05.003.
  • 18 D.Y.Z. Lim, Y.B. Tan, J.T.E. Koh, J.Y.M. Tung, G.G.R. Sng, D.M.Y. Tan, C.-K. Tan, ChatGPT on guidelines: Providing contextual knowledge to GPT allows it to provide advice on appropriate colonoscopy intervals, Journal of Gastroenterology and Hepatology (Australia) (2023). https://doi.org/10.1111/jgh.16375.
  • 19 J. Zhou, T. Li, S.J. Fong, N. Dey, R.G. Crespo, Exploring ChatGPT's Potential for Consultation, Recommendations and Report Diagnosis: Gastric Cancer and Gastroscopy Reports' Case, International Journal of Interactive Multimedia and Artificial Intelligence 8 (2023) 7–13. https://doi.org/10.9781/ijimai.2023.04.007.
  • 20 J.R. Lechien, C.-M. Chiesa-Estomba, R. Baudouin, S. Hans, Accuracy of ChatGPT in head and neck oncological board decisions: preliminary findings, European Archives of Oto-Rhino-Laryngology (2023). https://doi.org/10.1007/s00405-023-08326-w.
  • 21 J.M. Choo, H.S. Ryu, J.S. Kim, J.Y. Cheong, S.-J. Baek, J.M. Kwak, J. Kim, Conversational artificial intelligence (chatGPTTM) in the management of complex colorectal cancer patients: early experience, ANZ Journal of Surgery (2023). https://doi.org/10.1111/ans.18749.
  • 22 L. Elbatarny, R.K.G. Do, N. Gangai, F. Ahmed, S. Chhabra, A.L. Simpson, Applying Natural Language Processing to Single-Report Prediction of Metastatic Disease Response Using the OR-RADS Lexicon, Cancers 15 (2023). https://doi.org/10.3390/cancers15204909.
  • 23 H.A. Elmarakeby, P.S. Trukhanov, V.M. Arroyo, I.B. Riaz, D. Schrag, E.M. Van Allen, K.L. Kehl, Empirical evaluation of language modeling to ascertain cancer outcomes from clinical text reports, BMC Bioinformatics 24 (2023). https://doi.org/10.1186/s12859-023-05439-1.
  • 24 M.A. Fink, K. Kades, A. Bischoff, M. Moll, M. Schnell, M. Küchler, G. Köhler, J. Sellner, C.P. Heussel, H.-U. Kauczor, H.-P. Schlemmer, K. Maier-Hein, T.F. Weber, J. Kleesiek, Deep Learning–based Assessment of Oncologic Outcomes from Natural Language Processing of Structured Radiology Reports, Radiology: Artificial Intelligence 4 (2022). https://doi.org/10.1148/ryai.220055.
  • 25 R. Lian, V. Hsiao, J. Hwang, Y. Ou, S.E. Robbins, N.P. Connor, C.L. Macdonald, R.S. Sippel, W.A. Sethares, D.F. Schneider, Predicting health-related quality of life change using natural language processing in thyroid cancer, Intelligence-Based Medicine 7 (2023). https://doi.org/10.1016/j.ibmed.2023.100097.
  • 26 R.S.Y.C. Tan, Q. Lin, G.H. Low, R. Lin, T.C. Goh, C.C.E. Chang, F.F. Lee, W.Y. Chan, W.C. Tan, H.J. Tey, F.L. Leong, H.Q. Tan, W.L. Nei, W.Y. Chay, D.W.M. Tai, G.G.Y. Lai, L.T.-E. Cheng, F.Y. Wong, M.C.H. Chua, M.L.K. Chua, D.S.W. Tan, C.H. Thng, I.B.H. Tan, H.T. Ng, Inferring cancer disease response from radiology reports using large language models with data augmentation and prompting, Journal of the American Medical Informatics Association : JAMIA 30 (2023) 1657–1664. https://doi.org/10.1093/jamia/ocad133.
  • 27 M. Ismail, S. Khan, F. Khan, S. Noor, H. Sajid, S. Yar, I. Rasheed, Prevalence and significance of potential drug-drug interactions among cancer patients receiving chemotherapy, BMC Cancer 20 (2020) 335. https://doi.org/10.1186/s12885-020-06855-9.
  • 28 R. Du, X. Wang, L. Ma, L.M. Larcher, H. Tang, H. Zhou, C. Chen, T. Wang, Adverse reactions of targeted therapy in cancer patients: a retrospective study of hospital medical data in China, BMC Cancer 21 (2021) 206. https://doi.org/10.1186/s12885-021-07946-x.
  • 29 S. Chen, M. Guevara, N. Ramirez, A. Murray, J.L. Warner, H.J.W.L. Aerts, T.A. Miller, G.K. Savova, R.H. Mak, D.S. Bitterman, Natural Language Processing to Automatically Extract the Presence and Severity of Esophagitis in Notes of Patients Undergoing Radiotherapy, JCO Clinical Cancer Informatics 7 (2023) e2300048. https://doi.org/10.1200/CCI.23.00048.
  • 30 M.M. Zitu, S. Zhang, D.H. Owen, C. Chiang, L. Li, Generalizability of machine learning methods in detecting adverse drug events from clinical narratives in electronic medical records, Frontiers in Pharmacology 14 (2023). https://doi.org/10.3389/fphar.2023.1218679.
  • 31 S. Nishioka, M. Asano, S. Yada, E. Aramaki, H. Yajima, Y. Yanagisawa, K. Sayama, H. Kizaki, S. Hori, Adverse event signal extraction from cancer patients' narratives focusing on impact on their daily-life activities, Sci Rep 13 (2023) 15516. https://doi.org/10.1038/s41598-023-42496-1.
  • 32 G. Gebrael, K.K. Sahu, B. Chigarira, N. Tripathi, V. Mathew Thomas, N. Sayegh, B.L. Maughan, N. Agarwal, U. Swami, H. Li, Enhancing Triage Efficiency and Accuracy in Emergency Rooms for Patients with Metastatic Prostate Cancer: A Retrospective Analysis of Artificial Intelligence-Assisted Triage Using ChatGPT 4.0, Cancers 15 (2023). https://doi.org/10.3390/cancers15143717.
  • 33 T. Watanabe, S. Yada, E. Aramaki, H. Yajima, H. Kizaki, S. Hori, Extracting Multiple Worries from Breast Cancer Patient Blogs Using Multilabel Classification with the Natural Language Processing Model Bidirectional Encoder Representations from Transformers: Infodemiology Study of Blogs, JMIR Cancer 8 (2022). https://doi.org/10.2196/37840.
  • 34 C. Sun, X. Qiu, Y. Xu, X. Huang, How to Fine-Tune BERT for Text Classification?, in: M. Sun, X. Huang, H. Ji, Z. Liu, Y. Liu (Eds.), Chinese Computational Linguistics, Springer International Publishing, Cham, 2019: pp. 194–206. https://doi.org/10.1007/978-3-030-32381-3_16.
  • 35 Y. Huang, A. Gomaa, S. Semrau, M. Haderlein, S. Lettmaier, T. Weissmann, J. Grigo, H.B. Tkhayat, B. Frey, U. Gaipl, L. Distel, A. Maier, R. Fietkau, C. Bert, F. Putz, Benchmarking ChatGPT-4 on a radiation oncology in-training exam and Red Journal Gray Zone cases: potentials and challenges for ai-assisted medical education and decision making in radiation oncology, Frontiers in Oncology 13 (2023). https://doi.org/10.3389/fonc.2023.1265024.
  • 36 J. Holmes, Z. Liu, L. Zhang, Y. Ding, T.T. Sio, L.A. McGee, J.B. Ashman, X. Li, T. Liu, J. Shen, W. Liu, Evaluating large language models on a highly-specialized topic, radiation oncology physics, Frontiers in Oncology 13 (2023). https://doi.org/10.3389/fonc.2023.1219326.
  • 37 C.E. Hermann, J.M. Patel, L. Boyd, W.B. Growdon, E. Aviki, M. Stasenko, Let's chat about cervical cancer: Assessing the accuracy of ChatGPT responses to cervical cancer questions, Gynecologic Oncology 179 (2023) 164–168. https://doi.org/10.1016/j.ygyno.2023.11.008.
  • 38 D. Musheyev, A. Pan, S. Loeb, A.E. Kabarriti, How Well Do Artificial Intelligence Chatbots Respond to the Top Search Queries About Urological Malignancies?, European Urology 85 (2024) 13–16. https://doi.org/10.1016/j.eururo.2023.07.004.
  • 39 J.M.M. Rogasch, G. Metzger, M. Preisler, M. Galler, F. Thiele, W. Brenner, F. Feldhaus, C. Wetz, H. Amthauer, C. Furth, I. Schatka, ChatGPT: Can you prepare my patients for [18F]FDG PET/CT and explain my reports?, Journal of Nuclear Medicine 64 (2023) 1876–1879. https://doi.org/10.2967/jnumed.123.266114.
  • 40 J.J. Szczesniewski, C. Tellez Fouz, A. Ramos Alba, F.J. Diaz Goizueta, A. García Tello, L. Llanes González, ChatGPT and most frequent urological diseases: analysing the quality of information and potential risks for patients, World Journal of Urology 41 (2023) 3149–3153. https://doi.org/10.1007/s00345-023-04563-0.
  • 41 W. Floyd, T. Kleber, D.J. Carpenter, M. Pasli, J. Qazi, C. Huang, J. Leng, B.G. Ackerson, M. Pierpoint, J.K. Salama, M.J. Boyer, Current Strengths and Weaknesses of ChatGPT as a Resource for Radiation Oncology Patients and Providers, International Journal of Radiation Oncology*Biology*Physics (2023). https://doi.org/10.1016/j.ijrobp.2023.10.020.
  • 42 A. Cocci, M. Pezzoli, M. Lo Re, G.I. Russo, M.G. Asmundo, M. Fode, G. Cacciamani, S. Cimino, A. Minervini, E. Durukan, Quality of information and appropriateness of ChatGPT outputs for urology patients, Prostate Cancer Prostatic Dis (2023) 1–6. https://doi.org/10.1038/s41391-023-00705-y.
  • 43 B. Coskun, G. Ocakoglu, M. Yetemen, O. Kaygisiz, Can ChatGPT, an Artificial Intelligence Language Model, Provide Accurate and High-quality Patient Information on Prostate Cancer?, Urology 180 (2023) 35–58. https://doi.org/10.1016/j.urology.2023.05.040.
  • 44 R.J. Davis, O. Ayo-Ajibola, M.E. Lin, M.S. Swanson, T.N. Chambers, D.I. Kwon, N.C. Kokot, Evaluation of Oropharyngeal Cancer Information from Revolutionary Artificial Intelligence Chatbot, Laryngoscope (2023). https://doi.org/10.1002/lary.31191.
  • 45 E.-M. Braun, I. Juhasz-Böss, E.-F. Solomayer, D. Truhn, C. Keller, V. Heinrich, B.J. Braun, Will I soon be out of my job? Quality and guideline conformity of ChatGPT therapy suggestions to patient inquiries with gynecologic symptoms in a palliative setting, Archives of Gynecology and Obstetrics (2023). https://doi.org/10.1007/s00404-023-07272-6.
  • 46 A.A. Rahsepar, N. Tavakoli, G.H.J. Kim, C. Hassani, F. Abtin, A. Bedayat, How AI Responds to Common Lung Cancer Questions: ChatGPT versus Google Bard, Radiology 307 (2023). https://doi.org/10.1148/radiol.230922.
  • 47 A. Pan, D. Musheyev, D. Bockelman, S. Loeb, A.E. Kabarriti, Assessment of Artificial Intelligence Chatbot Responses to Top Searched Queries about Cancer, JAMA Oncology 9 (2023) 1437–1440. https://doi.org/10.1001/jamaoncol.2023.2947.
  • 48 S.B. Johnson, A.J. King, E.L. Warner, S. Aneja, B.H. Kann, C.L. Bylund, Using ChatGPT to evaluate cancer myths and misconceptions: artificial intelligence and cancer information, JNCI Cancer Spectrum 7 (2023). https://doi.org/10.1093/jncics/pkad015.
  • 49 Q. Lyu, J. Tan, M.E. Zapadka, J. Ponnatapura, C. Niu, K.J. Myers, G. Wang, C.T. Whitlow, Translating radiology reports into plain language using ChatGPT and GPT-4 with prompt learning: results, limitations, and potential, Visual Computing for Industry, Biomedicine, and Art 6 (2023). https://doi.org/10.1186/s42492-023-00136-5.
  • 50 D. Brin, V. Sorin, A. Vaid, A. Soroush, B.S. Glicksberg, A.W. Charney, G. Nadkarni, E. Klang, Comparing ChatGPT and GPT-4 performance in USMLE soft skill assessments, Sci Rep 13 (2023) 16492. https://doi.org/10.1038/s41598-023-43436-9.
  • 51 D. Cai, Y. Wang, L. Liu, S. Shi, Recent Advances in Retrieval-Augmented Text Generation, in: 2022: pp. 3417–3419. https://doi.org/10.1145/3477495.3532682.
  • 52 Y. Guo, W. Qiu, G. Leroy, S. Wang, T. Cohen, Retrieval augmentation of large language models for lay language generation, Journal of Biomedical Informatics 149 (2024). https://doi.org/10.1016/j.jbi.2023.104580.
  • 53 M. Guckenberger, N. Andratschke, M. Ahmadsei, S.M. Christ, A.E. Heusel, S. Kamal, T.E. Kroese, E.L. Looman, S. Reichl, E. Vlaskou Badra, J. von der Grün, J. Willmann, S. Tanadini-Lang, M. Mayinger, Potential of ChatGPT in facilitating research in radiation oncology?, Radiotherapy and Oncology 188 (2023). https://doi.org/10.1016/j.radonc.2023.109894.
  • 54 S. Mithun, A.K. Jha, U.B. Sherkhane, V. Jaiswar, N.C. Purandare, V. Rangarajan, A. Dekker, S. Puts, I. Bermejo, L. Wee, Development and validation of deep learning and BERT models for classification of lung cancer radiology reports, Informatics in Medicine Unlocked 40 (2023). https://doi.org/10.1016/j.imu.2023.101294.
  • 55 M.A. Fink, A. Bischoff, C.A. Fink, M. Moll, J. Kroschke, L. Dulz, C.P. Heußel, H.-U. Kauczor, T.F. Weber, Potential of ChatGPT and GPT-4 for Data Mining of Free-Text CT Reports on Lung Cancer, Radiology 308 (2023). https://doi.org/10.1148/radiol.231362.
  • 56 S. Zhou, N. Wang, L. Wang, H. Liu, R. Zhang, CancerBERT: A cancer domain-specific language model for extracting breast cancer phenotypes from electronic health records, Journal of the American Medical Informatics Association 29 (2022) 1208–1216. https://doi.org/10.1093/jamia/ocac040.
  • 57 F.W. Mutinda, K. Liew, S. Yada, S. Wakamiya, E. Aramaki, Automatic data extraction to support meta-analysis statistical analysis: a case study on breast cancer, BMC Medical Informatics and Decision Making 22 (2022). https://doi.org/10.1186/s12911-022-01897-4.
  • 58 A. Gendrin, L. Souliotis, J. Loudon-Griffiths, R. Aggarwal, D. Amoako, G. Desouza, S. Dimitrievska, P. Metcalfe, E. Louvet, H. Sahni, Identifying Patient Populations in Texts Describing Drug Approvals Through Deep Learning–Based Information Extraction: Development of a Natural Language Processing Algorithm, JMIR Formative Research 7 (2023). https://doi.org/10.2196/44876.
  • 59 Y. Zhang, X. Li, Y. Liu, A. Li, X. Yang, X. Tang, A Multilabel Text Classifier of Cancer Literature at the Publication Level: Methods Study of Medical Text Classification, JMIR Medical Informatics 11 (2023). https://doi.org/10.2196/44892.
  • 60 H.S. Choi, J.Y. Song, K.H. Shin, J.H. Chang, B.-S. Jang, Developing prompts from large language model for extracting clinical information from pathology and ultrasound reports in breast cancer, Radiation Oncology Journal 41 (2023) 209–216. https://doi.org/10.3857/roj.2023.00633.
  • 61 G. Kuling, B. Curpen, A.L. Martel, BI-RADS BERT and Using Section Segmentation to Understand Radiology Reports, Journal of Imaging 8 (2022). https://doi.org/10.3390/jimaging8050131.
  • 62 J.R. Mitchell, P. Szepietowski, R. Howard, P. Reisman, J.D. Jones, P. Lewis, B.L. Fridley, D.E. Rollison, A Question-and-Answer System to Extract Data From Free-Text Oncological Pathology Reports (CancerBERT Network): Development Study, Journal of Medical Internet Research 24 (2022). https://doi.org/10.2196/27210.
  • 63 H. Huang, F.X.Y. Lim, G.T. Gu, M.J. Han, A.H.S. Fang, E.H.S. Chia, E.Y.T. Bei, S.Z. Tham, H.S.S. Ho, J.S.P. Yuen, A. Sun, J.K.S. Lim, Natural language processing in urology: Automated extraction of clinical information from histopathology reports of uro-oncology procedures, Heliyon 9 (2023). https://doi.org/10.1016/j.heliyon.2023.e14793.
  • 64 P. Uskaner Hepsağ, S.A. Özel, K. Dalcı, A. Yazıcı, Using BERT models for breast cancer diagnosis from Turkish radiology reports, Language Resources and Evaluation (2023). https://doi.org/10.1007/s10579-023-09669-w.
  • 65 C. Fang, N. Markuzon, N. Patel, J.-D. Rueda, Natural Language Processing for Automated Classification of Qualitative Data From Interviews of Patients With Cancer, Value in Health 25 (2022) 1995–2002. https://doi.org/10.1016/j.jval.2022.06.004.
  • 66 E.B. Lee, G.E. Heo, C.M. Choi, M. Song, MLM-based typographical error correction of unstructured medical texts for named entity recognition, BMC Bioinformatics 23 (2022). https://doi.org/10.1186/s12859-022-05035-9.
  • 67 M. Bali, A.S. Pichandi, NeRBERT- A Biomedical Named Entity Recognition Tagger, Revue d'Intelligence Artificielle 37 (2023) 239–247. https://doi.org/10.18280/ria.370130.
  • 68 O.S. Pabón, O. Montenegro, M. Torrente, A.R. González, M. Provencio, E. Menasalvas, Negation and uncertainty detection in clinical texts written in Spanish: a deep learning-based approach, PeerJ Computer Science 8 (2022). https://doi.org/10.7717/PEERJ-CS.913.
  • 69 O. Solarte-Pabón, O. Montenegro, A. García-Barragán, M. Torrente, M. Provencio, E. Menasalvas, V. Robles, Transformers for extracting breast cancer information from Spanish clinical narratives, Artificial Intelligence in Medicine 143 (2023). https://doi.org/10.1016/j.artmed.2023.102625.
  • 70 M. Hosseini, S.P.J.M. Horbach, Fighting reviewer fatigue or amplifying bias? Considerations and recommendations for use of ChatGPT and other large language models in scholarly peer review, Research Integrity and Peer Review 8 (2023) 4. https://doi.org/10.1186/s41073-023-00133-5.
  • 71 J.G. Meyer, R.J. Urbanowicz, P.C.N. Martin, K. O'Connor, R. Li, P.-C. Peng, T.J. Bright, N. Tatonetti, K.J. Won, G. Gonzalez-Hernandez, J.H. Moore, ChatGPT and large language models in academia: opportunities and challenges, BioData Mining 16 (2023) 20. https://doi.org/10.1186/s13040-023-00339-9.
  • 72 B. Fecher, M. Hebing, M. Laufer, J. Pohle, F. Sofsky, Friend or foe? Exploring the implications of large language models on the science system, AI & Soc (2023). https://doi.org/10.1007/s00146-023-01791-1.
  • 73 T. Kojima, S.S. Gu, M. Reid, Y. Matsuo, Y. Iwasawa, Large Language Models are Zero-Shot Reasoners, arXiv.Org (2022). https://arxiv.org/abs/2205.11916v4 (accessed January 14, 2024).
  • 74 R. Taylor, M. Kardas, G. Cucurull, T. Scialom, A. Hartshorn, E. Saravia, A. Poulton, V. Kerkez, R. Stojnic, Galactica: A Large Language Model for Science, arXiv.Org (2022). https://arxiv.org/abs/2211.09085v1 (accessed May 3, 2024).
  • 75 I. Beltagy, M.E. Peters, A. Cohan, Longformer: The Long-Document Transformer, arXiv.Org (2020). https://arxiv.org/abs/2004.05150v2 (accessed May 3, 2024).
  • 76 X. Yang, A. Chen, N. PourNejatian, H.C. Shin, K.E. Smith, C. Parisien, C. Compas, C. Martin, M.G. Flores, Y. Zhang, T. Magoc, C.A. Harle, G. Lipori, D.A. Mitchell, W.R. Hogan, E.A. Shenkman, J. Bian, Y. Wu, GatorTron: A Large Clinical Language Model to Unlock Patient Information from Unstructured Electronic Health Records, arXiv.Org (2022). https://arxiv.org/abs/2203.03540v3 (accessed May 3, 2024).
  • 77 C. Peng, X. Yang, A. Chen, K.E. Smith, N. PourNejatian, A.B. Costa, C. Martin, M.G. Flores, Y. Zhang, T. Magoc, G. Lipori, D.A. Mitchell, N.S. Ospina, M.M. Ahmed, W.R. Hogan, E.A. Shenkman, Y. Guo, J. Bian, Y. Wu, A study of generative large language model for medical research and healthcare, Npj Digit. Med. 6 (2023) 210. https://doi.org/10.1038/s41746-023-00958-w.
  • 78 T. Dettmers, A. Pagnoni, A. Holtzman, L. Zettlemoyer, QLoRA: Efficient Finetuning of Quantized LLMs, (2023). http://arxiv.org/abs/2305.14314 (accessed January 31, 2024).
  • 79 G. Xiao, J. Lin, M. Seznec, H. Wu, J. Demouth, S. Han, SmoothQuant: Accurate and Efficient Post-Training Quantization for Large Language Models, in: Proceedings of the 40th International Conference on Machine Learning, PMLR, 2023: pp. 38087–38099. https://proceedings.mlr.press/v202/xiao23c.html (accessed January 31, 2024).
  • 80 H. Touvron, T. Lavril, G. Izacard, X. Martinet, M.-A. Lachaux, T. Lacroix, B. Rozière, N. Goyal, E. Hambro, F. Azhar, A. Rodriguez, A. Joulin, E. Grave, G. Lample, LLaMA: Open and Efficient Foundation Language Models, (2023). https://doi.org/10.48550/arXiv.2302.13971.
  • 81 M.R. Waters, S. Aneja, J.C. Hong, Unlocking the Power of ChatGPT, Artificial Intelligence, and Large Language Models: Practical Suggestions for Radiation Oncologists, Practical Radiation Oncology 13 (2023) e484–e490. https://doi.org/10.1016/j.prro.2023.06.011.
  • 82 A. Wang, A. Singh, J. Michael, F. Hill, O. Levy, S.R. Bowman, GLUE: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding, (2019). http://arxiv.org/abs/1804.07461 (accessed January 31, 2024).
  • 83 D. Hendrycks, C. Burns, S. Basart, A. Zou, M. Mazeika, D. Song, J. Steinhardt, Measuring Massive Multitask Language Understanding, (2021). http://arxiv.org/abs/2009.03300 (accessed January 31, 2024).
  • 84 P. Rajpurkar, J. Zhang, K. Lopyrev, P. Liang, SQuAD: 100,000+ Questions for Machine Comprehension of Text, arXiv.Org (2016). https://arxiv.org/abs/1606.05250v3 (accessed January 31, 2024).
  • 85 J. Clusmann, F.R. Kolbinger, H.S. Muti, Z.I. Carrero, J.-N. Eckardt, N.G. Laleh, C.M.L. Löffler, S.-C. Schwarzkopf, M. Unger, G.P. Veldhuizen, S.J. Wagner, J.N. Kather, The future landscape of large language models in medicine, Commun Med 3 (2023) 141. https://doi.org/10.1038/s43856-023-00370-1.
  • 86 K.E. Goodman, P.H. Yi, D.J. Morgan, AI-Generated Clinical Summaries Require More Than Accuracy, JAMA (2024). https://doi.org/10.1001/jama.2024.0555.
  • 87 A.J. Thirunavukarasu, D.S.J. Ting, K. Elangovan, L. Gutierrez, T.F. Tan, D.S.W. Ting, Large language models in medicine, Nat Med 29 (2023) 1930–1940. https://doi.org/10.1038/s41591-023-02448-8.
  • 88 B. Meskó, E.J. Topol, The imperative for regulatory oversight of large language models (or generative AI) in healthcare, Npj Digit. Med. 6 (2023) 1–6. https://doi.org/10.1038/s41746-023-00873-0.
  • 89 J.C.L. Ong, S.Y.-H. Chang, W. William, A.J. Butte, N.H. Shah, L.S.T. Chew, N. Liu, F. Doshi-Velez, W. Lu, J. Savulescu, D.S.W. Ting, Ethical and regulatory challenges of large language models in medicine, The Lancet Digital Health 0 (2024). https://doi.org/10.1016/S2589-7500(24)00061-X.