RSS-Feed abonnieren

DOI: 10.1055/s-0044-1800726
A Narrative Review on the Application of Large Language Models to Support Cancer Care and Research

Summary
Objectives: The emergence of large language models has resulted in a significant shift in informatics research and carries promise in clinical cancer care. Here we provide a narrative review of the recent use of large language models (LLMs) to support cancer care, prevention, and research.
Methods: We performed a search of the Scopus database for studies on the application of bidirectional encoder representations from transformers (BERT) and generative-pretrained transformer (GPT) LLMs in cancer care published between the start of 2021 and the end of 2023. We present salient and impactful papers related to each of these themes.
Results: Studies identified focused on aspects of clinical decision support (CDS), cancer education, and support for research activities. The use of LLMs for CDS primarily focused on aspects of treatment and screening planning, treatment response, and the management of adverse events. Studies using LLMs for cancer education typically focused on question-answering, assessing cancer myths and misconceptions, and text summarization and simplification. Finally, studies using LLMs to support research activities focused on scientific writing and idea generation, cohort identification and extraction, clinical data processing, and NLP-centric tasks.
Conclusions: The application of LLMs in cancer care has shown promise across a variety of diverse use cases. Future research should utilize quantitative metrics, qualitative insights, and user insights in the development and evaluation of LLM-based cancer care tools. The development of open-source LLMs for use in cancer care research and activities should also be a priority.
Keywords
large language models - clinical decision support - artificial intelligence - natural language processing - generative AIPublikationsverlauf
Artikel online veröffentlicht:
08. April 2025
© 2024. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting unrestricted use, distribution, and reproduction so long as the original work is properly cited. (https://creativecommons.org/licenses/by/4.0/)
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 R.L. Siegel, A.N. Giaquinto, A. Jemal, Cancer statistics, 2024, CA: A Cancer Journal
for Clinicians 74 (2024) 12–49. https://doi.org/10.3322/caac.21820.
- 2 N. Keshava, T.S. Toh, H. Yuan, B. Yang, M.P. Menden, D. Wang, Defining subpopulations
of differential drug response to reveal novel target populations, Npj Syst Biol Appl
5 (2019) 1–11. https://doi.org/10.1038/s41540-019-0113-4.
- 3 L.F. Forrest, J. Adams, H. Wareham, G. Rubin, M. White, Socioeconomic Inequalities
in Lung Cancer Treatment: Systematic Review and Meta-Analysis, PLOS Medicine 10 (2013)
e1001376. https://doi.org/10.1371/journal.pmed.1001376.
- 4 K.R. Yabroff, J. Lund, D. Kepka, A. Mariotto, Economic Burden of Cancer in the US:
Estimates, Projections, and Future Research, Cancer Epidemiol Biomarkers Prev 20 (2011)
2006–2014. https://doi.org/10.1158/1055-9965.EPI-11-0650.
- 5 K.R. Yabroff, A. Mariotto, F. Tangka, J. Zhao, F. Islami, H. Sung, R.L. Sherman,
S.J. Henley, A. Jemal, E.M. Ward, Annual Report to the Nation on the Status of Cancer,
Part 2: Patient Economic Burden Associated With Cancer Care, JNCI: Journal of the
National Cancer Institute 113 (2021) 1670–1682. https://doi.org/10.1093/jnci/djab192.
- 6 M. Gholipour, R. Khajouei, P. Amiri, S. Hajesmaeel Gohari, L. Ahmadian, Extracting
cancer concepts from clinical notes using natural language processing: a systematic
review, BMC Bioinformatics 24 (2023) 405. https://doi.org/10.1186/s12859-023-05480-0.
- 7 W. Yim, M. Yetisgen, W.P. Harris, S.W. Kwan, Natural Language Processing in Oncology:
A Review, JAMA Oncology 2 (2016) 797–804. https://doi.org/10.1001/jamaoncol.2016.0213.
- 8 L. Wang, S. Fu, A. Wen, X. Ruan, H. He, S. Liu, S. Moon, M. Mai, I.B. Riaz, N. Wang,
P. Yang, H. Xu, J.L. Warner, H. Liu, Assessment of Electronic Health Record for Cancer
Research and Patient Care Through a Scoping Review of Cancer Natural Language Processing,
JCO Clin Cancer Inform (2022) e2200006. https://doi.org/10.1200/CCI.22.00006.
- 9 J. Devlin, M.-W. Chang, K. Lee, K. Toutanova, BERT: Pre-training of Deep Bidirectional
Transformers for Language Understanding, (2019). http://arxiv.org/abs/1810.04805 (accessed
September 27, 2023).
- 10 A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A.N. Gomez, L. Kaiser,
I. Polosukhin, Attention Is All You Need, (2023). http://arxiv.org/abs/1706.03762
(accessed January 28, 2024).
- 11 A. Radford, K. Narasimhan, T. Salimans, I. Sutskever, Improving Language Understanding
by Generative Pre-Training, (n.d.).
- 12 T.B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal, A. Neelakantan,
P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-Voss, G. Krueger, T. Henighan,
R. Child, A. Ramesh, D.M. Ziegler, J. Wu, C. Winter, C. Hesse, M. Chen, E. Sigler,
M. Litwin, S. Gray, B. Chess, J. Clark, C. Berner, S. McCandlish, A. Radford, I. Sutskever,
D. Amodei, Language Models are Few-Shot Learners, (2020). http://arxiv.org/abs/2005.14165
(accessed December 2, 2023).
- 13 S. Lukac, D. Dayan, V. Fink, E. Leinert, A. Hartkopf, K. Veselinovic, W. Janni, B.
Rack, K. Pfister, B. Heitmeir, F. Ebner, Evaluating ChatGPT as an adjunct for the
multidisciplinary tumor board decision-making in primary breast cancer cases, Arch
Gynecol Obstet 308 (2023) 1831–1844. https://doi.org/10.1007/s00404-023-07130-5.
- 14 S. Chen, B.H. Kann, M.B. Foote, H.J.W.L. Aerts, G.K. Savova, R.H. Mak, D.S. Bitterman,
Use of Artificial Intelligence Chatbots for Cancer Treatment Information, JAMA Oncol
9 (2023) 1459. https://doi.org/10.1001/jamaoncol.2023.2954.
- 15 S. Griewing, N. Gremke, U. Wagner, M. Lingenfelder, S. Kuhn, J. Boekhoff, Challenging
ChatGPT 3.5 in Senology—An Assessment of Concordance with Breast Cancer Tumor Board
Decision Making, Journal of Personalized Medicine 13 (2023). https://doi.org/10.3390/jpm13101502.
- 16 M. Benary, X.D. Wang, M. Schmidt, D. Soll, G. Hilfenhaus, M. Nassir, C. Sigler, M.
Knödler, U. Keller, D. Beule, U. Keilholz, U. Leser, D.T. Rieke, Leveraging Large
Language Models for Decision Support in Personalized Oncology, JAMA Netw Open 6 (2023)
e2343689. https://doi.org/10.1001/jamanetworkopen.2023.43689.
- 17 A. Rao, J. Kim, M. Kamineni, M. Pang, W. Lie, K.J. Dreyer, M.D. Succi, Evaluating
GPT as an Adjunct for Radiologic Decision Making: GPT-4 Versus GPT-3.5 in a Breast
Imaging Pilot, Journal of the American College of Radiology 20 (2023) 990–997. https://doi.org/10.1016/j.jacr.2023.05.003.
- 18 D.Y.Z. Lim, Y.B. Tan, J.T.E. Koh, J.Y.M. Tung, G.G.R. Sng, D.M.Y. Tan, C.-K. Tan,
ChatGPT on guidelines: Providing contextual knowledge to GPT allows it to provide
advice on appropriate colonoscopy intervals, Journal of Gastroenterology and Hepatology
(Australia) (2023). https://doi.org/10.1111/jgh.16375.
- 19 J. Zhou, T. Li, S.J. Fong, N. Dey, R.G. Crespo, Exploring ChatGPT's Potential for
Consultation, Recommendations and Report Diagnosis: Gastric Cancer and Gastroscopy
Reports' Case, International Journal of Interactive Multimedia and Artificial Intelligence
8 (2023) 7–13. https://doi.org/10.9781/ijimai.2023.04.007.
- 20 J.R. Lechien, C.-M. Chiesa-Estomba, R. Baudouin, S. Hans, Accuracy of ChatGPT in
head and neck oncological board decisions: preliminary findings, European Archives
of Oto-Rhino-Laryngology (2023). https://doi.org/10.1007/s00405-023-08326-w.
- 21 J.M. Choo, H.S. Ryu, J.S. Kim, J.Y. Cheong, S.-J. Baek, J.M. Kwak, J. Kim, Conversational
artificial intelligence (chatGPTTM) in the management of complex colorectal cancer
patients: early experience, ANZ Journal of Surgery (2023). https://doi.org/10.1111/ans.18749.
- 22 L. Elbatarny, R.K.G. Do, N. Gangai, F. Ahmed, S. Chhabra, A.L. Simpson, Applying
Natural Language Processing to Single-Report Prediction of Metastatic Disease Response
Using the OR-RADS Lexicon, Cancers 15 (2023). https://doi.org/10.3390/cancers15204909.
- 23 H.A. Elmarakeby, P.S. Trukhanov, V.M. Arroyo, I.B. Riaz, D. Schrag, E.M. Van Allen,
K.L. Kehl, Empirical evaluation of language modeling to ascertain cancer outcomes
from clinical text reports, BMC Bioinformatics 24 (2023). https://doi.org/10.1186/s12859-023-05439-1.
- 24 M.A. Fink, K. Kades, A. Bischoff, M. Moll, M. Schnell, M. Küchler, G. Köhler, J.
Sellner, C.P. Heussel, H.-U. Kauczor, H.-P. Schlemmer, K. Maier-Hein, T.F. Weber,
J. Kleesiek, Deep Learning–based Assessment of Oncologic Outcomes from Natural Language
Processing of Structured Radiology Reports, Radiology: Artificial Intelligence 4 (2022).
https://doi.org/10.1148/ryai.220055.
- 25 R. Lian, V. Hsiao, J. Hwang, Y. Ou, S.E. Robbins, N.P. Connor, C.L. Macdonald, R.S.
Sippel, W.A. Sethares, D.F. Schneider, Predicting health-related quality of life change
using natural language processing in thyroid cancer, Intelligence-Based Medicine 7
(2023). https://doi.org/10.1016/j.ibmed.2023.100097.
- 26 R.S.Y.C. Tan, Q. Lin, G.H. Low, R. Lin, T.C. Goh, C.C.E. Chang, F.F. Lee, W.Y. Chan,
W.C. Tan, H.J. Tey, F.L. Leong, H.Q. Tan, W.L. Nei, W.Y. Chay, D.W.M. Tai, G.G.Y.
Lai, L.T.-E. Cheng, F.Y. Wong, M.C.H. Chua, M.L.K. Chua, D.S.W. Tan, C.H. Thng, I.B.H.
Tan, H.T. Ng, Inferring cancer disease response from radiology reports using large
language models with data augmentation and prompting, Journal of the American Medical
Informatics Association : JAMIA 30 (2023) 1657–1664. https://doi.org/10.1093/jamia/ocad133.
- 27 M. Ismail, S. Khan, F. Khan, S. Noor, H. Sajid, S. Yar, I. Rasheed, Prevalence and
significance of potential drug-drug interactions among cancer patients receiving chemotherapy,
BMC Cancer 20 (2020) 335. https://doi.org/10.1186/s12885-020-06855-9.
- 28 R. Du, X. Wang, L. Ma, L.M. Larcher, H. Tang, H. Zhou, C. Chen, T. Wang, Adverse
reactions of targeted therapy in cancer patients: a retrospective study of hospital
medical data in China, BMC Cancer 21 (2021) 206. https://doi.org/10.1186/s12885-021-07946-x.
- 29 S. Chen, M. Guevara, N. Ramirez, A. Murray, J.L. Warner, H.J.W.L. Aerts, T.A. Miller,
G.K. Savova, R.H. Mak, D.S. Bitterman, Natural Language Processing to Automatically
Extract the Presence and Severity of Esophagitis in Notes of Patients Undergoing Radiotherapy,
JCO Clinical Cancer Informatics 7 (2023) e2300048. https://doi.org/10.1200/CCI.23.00048.
- 30 M.M. Zitu, S. Zhang, D.H. Owen, C. Chiang, L. Li, Generalizability of machine learning
methods in detecting adverse drug events from clinical narratives in electronic medical
records, Frontiers in Pharmacology 14 (2023). https://doi.org/10.3389/fphar.2023.1218679.
- 31 S. Nishioka, M. Asano, S. Yada, E. Aramaki, H. Yajima, Y. Yanagisawa, K. Sayama,
H. Kizaki, S. Hori, Adverse event signal extraction from cancer patients' narratives
focusing on impact on their daily-life activities, Sci Rep 13 (2023) 15516. https://doi.org/10.1038/s41598-023-42496-1.
- 32 G. Gebrael, K.K. Sahu, B. Chigarira, N. Tripathi, V. Mathew Thomas, N. Sayegh, B.L.
Maughan, N. Agarwal, U. Swami, H. Li, Enhancing Triage Efficiency and Accuracy in
Emergency Rooms for Patients with Metastatic Prostate Cancer: A Retrospective Analysis
of Artificial Intelligence-Assisted Triage Using ChatGPT 4.0, Cancers 15 (2023). https://doi.org/10.3390/cancers15143717.
- 33 T. Watanabe, S. Yada, E. Aramaki, H. Yajima, H. Kizaki, S. Hori, Extracting Multiple
Worries from Breast Cancer Patient Blogs Using Multilabel Classification with the
Natural Language Processing Model Bidirectional Encoder Representations from Transformers:
Infodemiology Study of Blogs, JMIR Cancer 8 (2022). https://doi.org/10.2196/37840.
- 34 C. Sun, X. Qiu, Y. Xu, X. Huang, How to Fine-Tune BERT for Text Classification?,
in: M. Sun, X. Huang, H. Ji, Z. Liu, Y. Liu (Eds.), Chinese Computational Linguistics,
Springer International Publishing, Cham, 2019: pp. 194–206. https://doi.org/10.1007/978-3-030-32381-3_16.
- 35 Y. Huang, A. Gomaa, S. Semrau, M. Haderlein, S. Lettmaier, T. Weissmann, J. Grigo,
H.B. Tkhayat, B. Frey, U. Gaipl, L. Distel, A. Maier, R. Fietkau, C. Bert, F. Putz,
Benchmarking ChatGPT-4 on a radiation oncology in-training exam and Red Journal Gray
Zone cases: potentials and challenges for ai-assisted medical education and decision
making in radiation oncology, Frontiers in Oncology 13 (2023). https://doi.org/10.3389/fonc.2023.1265024.
- 36 J. Holmes, Z. Liu, L. Zhang, Y. Ding, T.T. Sio, L.A. McGee, J.B. Ashman, X. Li, T.
Liu, J. Shen, W. Liu, Evaluating large language models on a highly-specialized topic,
radiation oncology physics, Frontiers in Oncology 13 (2023). https://doi.org/10.3389/fonc.2023.1219326.
- 37 C.E. Hermann, J.M. Patel, L. Boyd, W.B. Growdon, E. Aviki, M. Stasenko, Let's chat
about cervical cancer: Assessing the accuracy of ChatGPT responses to cervical cancer
questions, Gynecologic Oncology 179 (2023) 164–168. https://doi.org/10.1016/j.ygyno.2023.11.008.
- 38 D. Musheyev, A. Pan, S. Loeb, A.E. Kabarriti, How Well Do Artificial Intelligence
Chatbots Respond to the Top Search Queries About Urological Malignancies?, European
Urology 85 (2024) 13–16. https://doi.org/10.1016/j.eururo.2023.07.004.
- 39 J.M.M. Rogasch, G. Metzger, M. Preisler, M. Galler, F. Thiele, W. Brenner, F. Feldhaus,
C. Wetz, H. Amthauer, C. Furth, I. Schatka, ChatGPT: Can you prepare my patients for
[18F]FDG PET/CT and explain my reports?, Journal of Nuclear Medicine 64 (2023) 1876–1879.
https://doi.org/10.2967/jnumed.123.266114.
- 40 J.J. Szczesniewski, C. Tellez Fouz, A. Ramos Alba, F.J. Diaz Goizueta, A. García
Tello, L. Llanes González, ChatGPT and most frequent urological diseases: analysing
the quality of information and potential risks for patients, World Journal of Urology
41 (2023) 3149–3153. https://doi.org/10.1007/s00345-023-04563-0.
- 41 W. Floyd, T. Kleber, D.J. Carpenter, M. Pasli, J. Qazi, C. Huang, J. Leng, B.G. Ackerson,
M. Pierpoint, J.K. Salama, M.J. Boyer, Current Strengths and Weaknesses of ChatGPT
as a Resource for Radiation Oncology Patients and Providers, International Journal
of Radiation Oncology*Biology*Physics (2023). https://doi.org/10.1016/j.ijrobp.2023.10.020.
- 42 A. Cocci, M. Pezzoli, M. Lo Re, G.I. Russo, M.G. Asmundo, M. Fode, G. Cacciamani,
S. Cimino, A. Minervini, E. Durukan, Quality of information and appropriateness of
ChatGPT outputs for urology patients, Prostate Cancer Prostatic Dis (2023) 1–6. https://doi.org/10.1038/s41391-023-00705-y.
- 43 B. Coskun, G. Ocakoglu, M. Yetemen, O. Kaygisiz, Can ChatGPT, an Artificial Intelligence
Language Model, Provide Accurate and High-quality Patient Information on Prostate
Cancer?, Urology 180 (2023) 35–58. https://doi.org/10.1016/j.urology.2023.05.040.
- 44 R.J. Davis, O. Ayo-Ajibola, M.E. Lin, M.S. Swanson, T.N. Chambers, D.I. Kwon, N.C.
Kokot, Evaluation of Oropharyngeal Cancer Information from Revolutionary Artificial
Intelligence Chatbot, Laryngoscope (2023). https://doi.org/10.1002/lary.31191.
- 45 E.-M. Braun, I. Juhasz-Böss, E.-F. Solomayer, D. Truhn, C. Keller, V. Heinrich, B.J.
Braun, Will I soon be out of my job? Quality and guideline conformity of ChatGPT therapy
suggestions to patient inquiries with gynecologic symptoms in a palliative setting,
Archives of Gynecology and Obstetrics (2023). https://doi.org/10.1007/s00404-023-07272-6.
- 46 A.A. Rahsepar, N. Tavakoli, G.H.J. Kim, C. Hassani, F. Abtin, A. Bedayat, How AI
Responds to Common Lung Cancer Questions: ChatGPT versus Google Bard, Radiology 307
(2023). https://doi.org/10.1148/radiol.230922.
- 47 A. Pan, D. Musheyev, D. Bockelman, S. Loeb, A.E. Kabarriti, Assessment of Artificial
Intelligence Chatbot Responses to Top Searched Queries about Cancer, JAMA Oncology
9 (2023) 1437–1440. https://doi.org/10.1001/jamaoncol.2023.2947.
- 48 S.B. Johnson, A.J. King, E.L. Warner, S. Aneja, B.H. Kann, C.L. Bylund, Using ChatGPT
to evaluate cancer myths and misconceptions: artificial intelligence and cancer information,
JNCI Cancer Spectrum 7 (2023). https://doi.org/10.1093/jncics/pkad015.
- 49 Q. Lyu, J. Tan, M.E. Zapadka, J. Ponnatapura, C. Niu, K.J. Myers, G. Wang, C.T. Whitlow,
Translating radiology reports into plain language using ChatGPT and GPT-4 with prompt
learning: results, limitations, and potential, Visual Computing for Industry, Biomedicine,
and Art 6 (2023). https://doi.org/10.1186/s42492-023-00136-5.
- 50 D. Brin, V. Sorin, A. Vaid, A. Soroush, B.S. Glicksberg, A.W. Charney, G. Nadkarni,
E. Klang, Comparing ChatGPT and GPT-4 performance in USMLE soft skill assessments,
Sci Rep 13 (2023) 16492. https://doi.org/10.1038/s41598-023-43436-9.
- 51 D. Cai, Y. Wang, L. Liu, S. Shi, Recent Advances in Retrieval-Augmented Text Generation,
in: 2022: pp. 3417–3419. https://doi.org/10.1145/3477495.3532682.
- 52 Y. Guo, W. Qiu, G. Leroy, S. Wang, T. Cohen, Retrieval augmentation of large language
models for lay language generation, Journal of Biomedical Informatics 149 (2024).
https://doi.org/10.1016/j.jbi.2023.104580.
- 53 M. Guckenberger, N. Andratschke, M. Ahmadsei, S.M. Christ, A.E. Heusel, S. Kamal,
T.E. Kroese, E.L. Looman, S. Reichl, E. Vlaskou Badra, J. von der Grün, J. Willmann,
S. Tanadini-Lang, M. Mayinger, Potential of ChatGPT in facilitating research in radiation
oncology?, Radiotherapy and Oncology 188 (2023). https://doi.org/10.1016/j.radonc.2023.109894.
- 54 S. Mithun, A.K. Jha, U.B. Sherkhane, V. Jaiswar, N.C. Purandare, V. Rangarajan, A.
Dekker, S. Puts, I. Bermejo, L. Wee, Development and validation of deep learning and
BERT models for classification of lung cancer radiology reports, Informatics in Medicine
Unlocked 40 (2023). https://doi.org/10.1016/j.imu.2023.101294.
- 55 M.A. Fink, A. Bischoff, C.A. Fink, M. Moll, J. Kroschke, L. Dulz, C.P. Heußel, H.-U.
Kauczor, T.F. Weber, Potential of ChatGPT and GPT-4 for Data Mining of Free-Text CT
Reports on Lung Cancer, Radiology 308 (2023). https://doi.org/10.1148/radiol.231362.
- 56 S. Zhou, N. Wang, L. Wang, H. Liu, R. Zhang, CancerBERT: A cancer domain-specific
language model for extracting breast cancer phenotypes from electronic health records,
Journal of the American Medical Informatics Association 29 (2022) 1208–1216. https://doi.org/10.1093/jamia/ocac040.
- 57 F.W. Mutinda, K. Liew, S. Yada, S. Wakamiya, E. Aramaki, Automatic data extraction
to support meta-analysis statistical analysis: a case study on breast cancer, BMC
Medical Informatics and Decision Making 22 (2022). https://doi.org/10.1186/s12911-022-01897-4.
- 58 A. Gendrin, L. Souliotis, J. Loudon-Griffiths, R. Aggarwal, D. Amoako, G. Desouza,
S. Dimitrievska, P. Metcalfe, E. Louvet, H. Sahni, Identifying Patient Populations
in Texts Describing Drug Approvals Through Deep Learning–Based Information Extraction:
Development of a Natural Language Processing Algorithm, JMIR Formative Research 7
(2023). https://doi.org/10.2196/44876.
- 59 Y. Zhang, X. Li, Y. Liu, A. Li, X. Yang, X. Tang, A Multilabel Text Classifier of
Cancer Literature at the Publication Level: Methods Study of Medical Text Classification,
JMIR Medical Informatics 11 (2023). https://doi.org/10.2196/44892.
- 60 H.S. Choi, J.Y. Song, K.H. Shin, J.H. Chang, B.-S. Jang, Developing prompts from
large language model for extracting clinical information from pathology and ultrasound
reports in breast cancer, Radiation Oncology Journal 41 (2023) 209–216. https://doi.org/10.3857/roj.2023.00633.
- 61 G. Kuling, B. Curpen, A.L. Martel, BI-RADS BERT and Using Section Segmentation to
Understand Radiology Reports, Journal of Imaging 8 (2022). https://doi.org/10.3390/jimaging8050131.
- 62 J.R. Mitchell, P. Szepietowski, R. Howard, P. Reisman, J.D. Jones, P. Lewis, B.L.
Fridley, D.E. Rollison, A Question-and-Answer System to Extract Data From Free-Text
Oncological Pathology Reports (CancerBERT Network): Development Study, Journal of
Medical Internet Research 24 (2022). https://doi.org/10.2196/27210.
- 63 H. Huang, F.X.Y. Lim, G.T. Gu, M.J. Han, A.H.S. Fang, E.H.S. Chia, E.Y.T. Bei, S.Z.
Tham, H.S.S. Ho, J.S.P. Yuen, A. Sun, J.K.S. Lim, Natural language processing in urology:
Automated extraction of clinical information from histopathology reports of uro-oncology
procedures, Heliyon 9 (2023). https://doi.org/10.1016/j.heliyon.2023.e14793.
- 64 P. Uskaner Hepsağ, S.A. Özel, K. Dalcı, A. Yazıcı, Using BERT models for breast cancer
diagnosis from Turkish radiology reports, Language Resources and Evaluation (2023).
https://doi.org/10.1007/s10579-023-09669-w.
- 65 C. Fang, N. Markuzon, N. Patel, J.-D. Rueda, Natural Language Processing for Automated
Classification of Qualitative Data From Interviews of Patients With Cancer, Value
in Health 25 (2022) 1995–2002. https://doi.org/10.1016/j.jval.2022.06.004.
- 66 E.B. Lee, G.E. Heo, C.M. Choi, M. Song, MLM-based typographical error correction
of unstructured medical texts for named entity recognition, BMC Bioinformatics 23
(2022). https://doi.org/10.1186/s12859-022-05035-9.
- 67 M. Bali, A.S. Pichandi, NeRBERT- A Biomedical Named Entity Recognition Tagger, Revue
d'Intelligence Artificielle 37 (2023) 239–247. https://doi.org/10.18280/ria.370130.
- 68 O.S. Pabón, O. Montenegro, M. Torrente, A.R. González, M. Provencio, E. Menasalvas,
Negation and uncertainty detection in clinical texts written in Spanish: a deep learning-based
approach, PeerJ Computer Science 8 (2022). https://doi.org/10.7717/PEERJ-CS.913.
- 69 O. Solarte-Pabón, O. Montenegro, A. García-Barragán, M. Torrente, M. Provencio, E.
Menasalvas, V. Robles, Transformers for extracting breast cancer information from
Spanish clinical narratives, Artificial Intelligence in Medicine 143 (2023). https://doi.org/10.1016/j.artmed.2023.102625.
- 70 M. Hosseini, S.P.J.M. Horbach, Fighting reviewer fatigue or amplifying bias? Considerations
and recommendations for use of ChatGPT and other large language models in scholarly
peer review, Research Integrity and Peer Review 8 (2023) 4. https://doi.org/10.1186/s41073-023-00133-5.
- 71 J.G. Meyer, R.J. Urbanowicz, P.C.N. Martin, K. O'Connor, R. Li, P.-C. Peng, T.J.
Bright, N. Tatonetti, K.J. Won, G. Gonzalez-Hernandez, J.H. Moore, ChatGPT and large
language models in academia: opportunities and challenges, BioData Mining 16 (2023)
20. https://doi.org/10.1186/s13040-023-00339-9.
- 72 B. Fecher, M. Hebing, M. Laufer, J. Pohle, F. Sofsky, Friend or foe? Exploring the
implications of large language models on the science system, AI & Soc (2023). https://doi.org/10.1007/s00146-023-01791-1.
- 73 T. Kojima, S.S. Gu, M. Reid, Y. Matsuo, Y. Iwasawa, Large Language Models are Zero-Shot
Reasoners, arXiv.Org (2022). https://arxiv.org/abs/2205.11916v4 (accessed January
14, 2024).
- 74 R. Taylor, M. Kardas, G. Cucurull, T. Scialom, A. Hartshorn, E. Saravia, A. Poulton,
V. Kerkez, R. Stojnic, Galactica: A Large Language Model for Science, arXiv.Org (2022).
https://arxiv.org/abs/2211.09085v1 (accessed May 3, 2024).
- 75 I. Beltagy, M.E. Peters, A. Cohan, Longformer: The Long-Document Transformer, arXiv.Org
(2020). https://arxiv.org/abs/2004.05150v2 (accessed May 3, 2024).
- 76 X. Yang, A. Chen, N. PourNejatian, H.C. Shin, K.E. Smith, C. Parisien, C. Compas,
C. Martin, M.G. Flores, Y. Zhang, T. Magoc, C.A. Harle, G. Lipori, D.A. Mitchell,
W.R. Hogan, E.A. Shenkman, J. Bian, Y. Wu, GatorTron: A Large Clinical Language Model
to Unlock Patient Information from Unstructured Electronic Health Records, arXiv.Org
(2022). https://arxiv.org/abs/2203.03540v3 (accessed May 3, 2024).
- 77 C. Peng, X. Yang, A. Chen, K.E. Smith, N. PourNejatian, A.B. Costa, C. Martin, M.G.
Flores, Y. Zhang, T. Magoc, G. Lipori, D.A. Mitchell, N.S. Ospina, M.M. Ahmed, W.R.
Hogan, E.A. Shenkman, Y. Guo, J. Bian, Y. Wu, A study of generative large language
model for medical research and healthcare, Npj Digit. Med. 6 (2023) 210. https://doi.org/10.1038/s41746-023-00958-w.
- 78 T. Dettmers, A. Pagnoni, A. Holtzman, L. Zettlemoyer, QLoRA: Efficient Finetuning
of Quantized LLMs, (2023). http://arxiv.org/abs/2305.14314 (accessed January 31, 2024).
- 79 G. Xiao, J. Lin, M. Seznec, H. Wu, J. Demouth, S. Han, SmoothQuant: Accurate and
Efficient Post-Training Quantization for Large Language Models, in: Proceedings of
the 40th International Conference on Machine Learning, PMLR, 2023: pp. 38087–38099.
https://proceedings.mlr.press/v202/xiao23c.html (accessed January 31, 2024).
- 80 H. Touvron, T. Lavril, G. Izacard, X. Martinet, M.-A. Lachaux, T. Lacroix, B. Rozière,
N. Goyal, E. Hambro, F. Azhar, A. Rodriguez, A. Joulin, E. Grave, G. Lample, LLaMA:
Open and Efficient Foundation Language Models, (2023). https://doi.org/10.48550/arXiv.2302.13971.
- 81 M.R. Waters, S. Aneja, J.C. Hong, Unlocking the Power of ChatGPT, Artificial Intelligence,
and Large Language Models: Practical Suggestions for Radiation Oncologists, Practical
Radiation Oncology 13 (2023) e484–e490. https://doi.org/10.1016/j.prro.2023.06.011.
- 82 A. Wang, A. Singh, J. Michael, F. Hill, O. Levy, S.R. Bowman, GLUE: A Multi-Task
Benchmark and Analysis Platform for Natural Language Understanding, (2019). http://arxiv.org/abs/1804.07461
(accessed January 31, 2024).
- 83 D. Hendrycks, C. Burns, S. Basart, A. Zou, M. Mazeika, D. Song, J. Steinhardt, Measuring
Massive Multitask Language Understanding, (2021). http://arxiv.org/abs/2009.03300
(accessed January 31, 2024).
- 84 P. Rajpurkar, J. Zhang, K. Lopyrev, P. Liang, SQuAD: 100,000+ Questions for Machine
Comprehension of Text, arXiv.Org (2016). https://arxiv.org/abs/1606.05250v3 (accessed
January 31, 2024).
- 85 J. Clusmann, F.R. Kolbinger, H.S. Muti, Z.I. Carrero, J.-N. Eckardt, N.G. Laleh,
C.M.L. Löffler, S.-C. Schwarzkopf, M. Unger, G.P. Veldhuizen, S.J. Wagner, J.N. Kather,
The future landscape of large language models in medicine, Commun Med 3 (2023) 141.
https://doi.org/10.1038/s43856-023-00370-1.
- 86 K.E. Goodman, P.H. Yi, D.J. Morgan, AI-Generated Clinical Summaries Require More
Than Accuracy, JAMA (2024). https://doi.org/10.1001/jama.2024.0555.
- 87 A.J. Thirunavukarasu, D.S.J. Ting, K. Elangovan, L. Gutierrez, T.F. Tan, D.S.W. Ting,
Large language models in medicine, Nat Med 29 (2023) 1930–1940. https://doi.org/10.1038/s41591-023-02448-8.
- 88 B. Meskó, E.J. Topol, The imperative for regulatory oversight of large language models
(or generative AI) in healthcare, Npj Digit. Med. 6 (2023) 1–6. https://doi.org/10.1038/s41746-023-00873-0.
- 89 J.C.L. Ong, S.Y.-H. Chang, W. William, A.J. Butte, N.H. Shah, L.S.T. Chew, N. Liu,
F. Doshi-Velez, W. Lu, J. Savulescu, D.S.W. Ting, Ethical and regulatory challenges
of large language models in medicine, The Lancet Digital Health 0 (2024). https://doi.org/10.1016/S2589-7500(24)00061-X.