RSS-Feed abonnieren

DOI: 10.1055/s-0044-1800748
Knowledge Representation and Management: 2023 Highlights and the Rise of Knowledge Graph Embeddings
Autoren
Summary
Objectives: We aim to identify, select, and summarize the best papers published in 2023 for the Knowledge Representation and Management (KRM) section of the International Medical Informatics Association (IMIA) Yearbook.
Methods: We performed PubMed queries and adhered to the IMIA Yearbook guidelines for conducting biomedical informatics literature review to select the best papers in KRM published in 2023.
Results: Our search yielded a total of 1,666 publications from PubMed. From these, we identified 15 papers as potential candidates for the best papers, and three of them were finally selected as the best papers in the KRM section. The candidate best papers covered three main topics: knowledge graph, knowledge interoperability, and ontology. Notably, two of the three selected best papers explored the potential of knowledge graph embeddings for predicting intensive care unit readmissions and measuring disease distances, respectively.
Conclusions: The selection process for the best papers in the KRM section for 2023 showcased a wide spectrum of topics, with knowledge graph embeddings emerging as a promising area for supporting machine learning applications in biomedicine.
Keywords:
Knowledge Representation and Management - Knowledge Graph - Ontology - International Medical Informatics AssociationPublikationsverlauf
Artikel online veröffentlicht:
08. April 2025
© 2024. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting unrestricted use, distribution, and reproduction so long as the original work is properly cited. (https://creativecommons.org/licenses/by/4.0/)
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 Dhombres F, Charlet J. Knowledge Representation and Management, It's Time to Integrate! Yearb Med Inform 2017;26(1):148-51. https://doi.org/10.15265/IY-2017-030
- 2 Dhombres F, Charlet J. As Ontologies Reach Maturity, Artificial Intelligence Starts Being Fully Efficient: Findings from the Section on Knowledge Representation and Management for the Yearbook 2018. Yearb Med Inform 2018;27(1):140-5. https://doi.org/10.1055/s-0038-1667078
- 3 Dhombres F, Charlet J. Formal Medical Knowledge Representation Supports Deep Learning Algorithms, Bioinformatics Pipelines, Genomics Data Analysis, and Big Data Processes. Yearb Med Inform 2019;28(1):152-5. https://doi.org/10.1055/s-0039-1677933
- 4 Dhombres F, Charlet J. Design and Use of Semantic Resources: Findings from the Section on Knowledge Representation and Management of the 2020 International Medical Informatics Association Yearbook. Yearb Med Inform 2020;29(1):163-8. https://doi.org/10.1055/s-0040-1702010
- 5 Dhombres F, Charlet J. Knowledge Representation and Management: Interest in New Solutions for Ontology Curation. Yearb Med Inform 2021;30(01):185-90. https://doi.org/10.1055/s-0041-1726508
- 6 Cui L, Dhombres F, Charlet J. Knowledge Representation and Management: Notable Contributions in 2021. Yearb Med Inform 2022;31(01):236-40. https://doi.org/10.1055/s-0042-1742523
- 7 Charlet J, Cui L. Knowledge Representation and Management 2022: Findings in Ontology Development and Applications. Yearb Med Inform 2023;32(01):225-9. https://doi.org/10.1055/s-0043-1768747
- 8 Lamy JB, Séroussi B, Griffon N, Kerdelhué G, Jaulent MC, Bouaud J. Toward a formalization of the process to select IMIA Yearbook best papers. Methods Inf Med 2015;54(02):135-44. https://doi.org/10.3414/ME14-01-0031
- 9 Carvalho RM, Oliveira D, Pesquita C. Knowledge Graph Embeddings for ICU readmission prediction. BMC Med Inform Decis Mak 2023;23:12. https://doi.org/10.1186/s12911-022-02070-7
- 10 Caufield JH, Putman T, Schaper K, Unni DR, Hegde H, Callahan TJ, et al. KG-Hub-building and exchanging biological knowledge graphs. Bioinformatics 2023;39(7):btad418. https://doi.org/10.1093/bioinformatics/btad418
- 11 Fu M, Yan Y, Loohuis LM, Chang TS. Defining the distance between diseases using SNOMED CT embeddings. J Biomed Inform 2023;139:104307. https://doi.org/10.1016/j.jbi.2023.104307
- 12 Nunes S, Sousa RT, Pesquita C. Multi-domain knowledge graph embeddings for gene-disease association prediction. J Biomed Semantics 2023;14(1):11. https://doi.org/10.1186/s13326-023-00291-x
- 13 Taneja SB, Callahan TJ, Paine MF, Kane-Gill SL, Kilicoglu H, Joachimiak MP, et al. Developing a knowledge graph for pharmacokinetic natural product-drug interactions. J Biomed Inform 2023;140:104341. https://doi.org/10.1016/j.jbi.2023.104341
- 14 Abad-Navarro F, Martínez-Costa C. A knowledge graph-based data harmonization framework for secondary data reuse. Comput Methods Programs Biomed 2024;243:107918. https://doi.org/10.1016/j.cmpb.2023.107918
- 15 Lario R, Kawamoto K, Sottara D, Eilbeck K, Huff S, Del Fiol G, et al. A method for structuring complex clinical knowledge and its representational formalisms to support composite knowledge interoperability in healthcare. J Biomed Inform 2023;137:104251. https://doi.org/10.1016/j.jbi.2022.104251
- 16 McDonald CJ, Baik SH, Zheng Z, Amos L, Luan X, Marsolo K, et al. Mis-mappings between a producer's quantitative test codes and LOINC codes and an algorithm for correcting them. J Am Med Inform Assoc 2023;30(2):301-7. https://doi.org/10.1093/jamia/ocac215
- 17 Raboudi A, Hervé PY, Allanic M, Boutinaud P, Christophe JJ, Firat H, et al. The PACIFIC ontology for heterogeneous data management in cardiology. J Biomed Inform 2024;149:104579. https://doi.org/10.1016/j.jbi.2023.104579
- 18 Zhang B, Lage-Rupprecht V, Wegner P, Sargsyan A, Gebel S, Jacobs M, et al. Design of the formalized and integrated Alzheimer's Disease Ontology and its application in retrieving textual data via text mining. Database (Oxford) 2023:baad085. https://doi.org/10.1093/database/baad085
- 19 Taglino F, Cumbo F, Antognoli G, Arisi I, D'Onofrio M, Perazzoni F, et al. An ontology-based approach for modelling and querying Alzheimer's disease data. BMC Med Inform Decis Mak. 2023;23(1):153. https://doi.org/10.1186/s12911-023-02211-6
- 20 Hernández L, Estévez-Priego E, López-Pérez L, Cabrera-Umpiérrez MF, Arredondo MT, Fico G, et al. HeNeCOn: An ontology for integrative research in Head and Neck cancer. Int J Med Inform 2024;181:105284. https://doi.org/10.1016/j.ijmedinf.2023.105284
- 21 Dong H, Suárez-Paniagua V, Zhang H, Wang M, Casey A, Davidson E, et al. Ontology-driven and weakly supervised rare disease identification from clinical notes. BMC Med Inform Decis Mak 2023;23(1):86. https://doi.org/10.1186/s12911-023-02181-9
- 22 Calvo-Cidoncha E, Verdinelli J, González-Bueno J, López-Soto A, Camacho Hernando C, Pastor-Duran X, et al. An ontology-based approach to improving medication appropriateness in older patients: algorithm development and validation study. JMIR Med Inform 2023;11:e45850. https://doi.org/10.2196/45850
- 23 Diaz Benavides S, Cardoso SD, Da Silveira M, Pruski C. Analysis and implementation of the DynDiff tool when comparing versions of ontology. J Biomed Semantics 2023;14(1):15. https://doi.org/10.1186/s13326-023-00295-7
