CC BY 4.0 · Rev Bras Ortop (Sao Paulo) 2025; 60(01): s00441800922
DOI: 10.1055/s-0044-1800922
Artigo Original

Description of Hip Deformities in 5-Year-Old Patients with Congenital Zika Virus Syndrome: A Cross-Sectional Study

Article in several languages: português | English
1   Departamento de Cirurgia, Universidade Federal de Pernambuco, Recife, PE, Brasil.
,
2   Departamento de Ortopedia e Traumatologia, Hospital Getúlio Vargas, Recife, Pernambuco, PE, Brasil.
,
2   Departamento de Ortopedia e Traumatologia, Hospital Getúlio Vargas, Recife, Pernambuco, PE, Brasil.
,
2   Departamento de Ortopedia e Traumatologia, Hospital Getúlio Vargas, Recife, Pernambuco, PE, Brasil.
,
2   Departamento de Ortopedia e Traumatologia, Hospital Getúlio Vargas, Recife, Pernambuco, PE, Brasil.
,
1   Departamento de Cirurgia, Universidade Federal de Pernambuco, Recife, PE, Brasil.
3   Departamento de Ortopedia e Traumatologia, Universidade Federal de Pernambuco, Recife, PE, Brasil.
› Author Affiliations
Financial Support The authors declare that they did not financial support from agencies in the public, private, or non-profit sectors to conduct the present study.

Abstract

Objective To report on the most prevalent hip alterations in children older than 5 with congenital Zika virus syndrome (CZS) per clinical and radiographic examinations.

Methods Cross-sectional and retrospective study of 62 patients older than 5 with CZS. We extracted clinical data, including maximum abduction values, hip flexion contracture, gross motor function classification system (GMFCS) level, and radiographical data, including Reimers index (RI), femoral neck-shaft angle (FNSA), and acetabular index (AI), from medical records and radiographs and statistically evaluated them.

Results The mean age of children was 65.6 ± 4.1 months. Most patients (95.2%) presented GMFCS scores of IV and V. Slow hip abduction was 41.2 ± 19.5°. The Thomas test revealed a mean deviation of 16.1 ± 14.9°. The mean values of RI, FNSA, and AI were 54.1 ± 34.1%, 158 ± 11.9°, and 26.0 ± 8.12°, respectively. Patients with GMFCS III and IV had lower RI and AI than those with a score of V. Regarding FNSA, there was no statistical difference between groups. Patients who underwent tenotomy of the hip adductor muscles presented greater abduction but no relevant radiographic differences.

Conclusion There was a higher incidence of patients with hip luxation and more compromised functional degrees (GMFCS IV and V), and increased RI and AI in V. Operated patients presented abduction gain abduction but no radiographic improvement. Long-term studies are required to evaluate hip deformities in these subjects.

Work carried out at the Universidade Federal de Pernambuco and Associação Pernambucana de Apoio à Criança com Deficiência (AACD), Recife, PE, Brazil.




Publication History

Received: 23 April 2024

Accepted: 30 August 2024

Article published online:
28 April 2025

© 2025. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution 4.0 International License, permitting copying and reproduction so long as the original work is given appropriate credit (https://creativecommons.org/licenses/by/4.0/)

Thieme Revinter Publicações Ltda.
Rua do Matoso 170, Rio de Janeiro, RJ, CEP 20270-135, Brazil

Bibliographical Record
Herison Franklin Viana de Oliveira, Francisco Robson Queiroz Rego, Brauner de Souza Cavalcanti, Ítalo Rodrigues Bacellar, Thais Araújo Barbosa, Epitácio Leite Rolim Filho. Descrição das deformidades do quadril em pacientes com síndrome congênita do Zika vírus aos 5 anos de idade: Um estudo transversal. Rev Bras Ortop (Sao Paulo) 2025; 60: s00441800922.
DOI: 10.1055/s-0044-1800922
 
  • Referências

  • 1 Teixeira GA, Dantas DNA, Carvalho GAFL, Silva AND, Lira ALBC, Enders BC. Análise do conceito síndrome congênita pelo Zika vírus. Cien Saude Colet 2020; 25 (02) 567-574
  • 2 Brasil. Ministério da Saúde. Banco de dados do Sistema Único de Saúde-DATASUS. Banco de dados do Sistema Único de Saúde-DATASUS. [citado 13 de março de 2024]; Registro de eventos em saúde pública (RESP-Microcefalia). Disponível em: http://www.datasus.gov.br
  • 3 Jotha MC, Arruda AFSA, Paiva MPF, Sousa ESS, Paiva CSM, Queiroga A. Achados clínicos, complicações neurológicas e malformações congênitas relacionadas a infecção congênita por zika vírus. Rev Brasil Neurol Psiquiatr 2020; 24 (03) 198-210
  • 4 Dohin B. The spastic hip in children and adolescents. Orthop Traumatol Surg Res 2019; 105 (1S): S133-S141
  • 5 Miller SD, Mayson TA, Mulpuri K, O'Donnell ME. Developing a province-wide hip surveillance program for children with cerebral palsy: from evidence to consensus to program implementation: a mini-review. J Pediatr Orthop B 2020; 29 (06) 517-522
  • 6 Refakis CA, Baldwin KD, Spiegel DA, Sankar WN. Treatment of the Dislocated Hip in Infants With Spasticity. J Pediatr Orthop 2018; 38 (07) 345-349
  • 7 Wagner P, Hägglund G. Development of hip displacement in cerebral palsy: a longitudinal register study of 1,045 children. Acta Orthop 2022; 93: 124-131
  • 8 Graham HK, Thomason P, Willoughby K. et al. Musculoskeletal Pathology in Cerebral Palsy: A Classification System and Reliability Study. Children (Basel) 2021; 8 (03) 252
  • 9 Rosenbaum P, Paneth N, Leviton A. et al. A report: the definition and classification of cerebral palsy April 2006. Dev Med Child Neurol Suppl 2007; 109: 8-14 [published correction appears in Dev Med Child Neurol 2007 Jun;49(6):480]
  • 10 Ribeiro CTM, Hamanaka T, Pone S. et al. Gross motor function in children with Congenital Zika Syndrome from Rio de Janeiro, Brazil. Eur J Pediatr 2022; 181 (02) 783-788
  • 11 Carvalho A, Brites C, Mochida G. et al. Clinical and neurodevelopmental features in children with cerebral palsy and probable congenital Zika. Brain Dev 2019; 41 (07) 587-594
  • 12 Cavalcante TB, Ribeiro MRC, Sousa PDS. et al. Congenital Zika syndrome: Growth, clinical, and motor development outcomes up to 36 months of age and differences according to microcephaly at birth. Int J Infect Dis 2021; 105: 399-408
  • 13 Terjesen T. The natural history of hip development in cerebral palsy. Dev Med Child Neurol 2012; 54 (10) 951-957
  • 14 Soo B, Howard JJ, Boyd RN. et al. Hip displacement in cerebral palsy. J Bone Joint Surg Am 2006; 88 (01) 121-129
  • 15 Connelly A, Flett P, Graham HK, Oates J. Hip surveillance in Tasmanian children with cerebral palsy. J Paediatr Child Health 2009; 45 (7-8): 437-443
  • 16 Aroojis A, Mantri N, Johari AN. Hip Displacement in Cerebral Palsy: The Role of Surveillance. Indian J Orthop 2020; 55 (01) 5-19
  • 17 Robin J, Graham HK, Selber P, Dobson F, Smith K, Baker R. Proximal femoral geometry in cerebral palsy: a population-based cross-sectional study. J Bone Joint Surg Br 2008; 90 (10) 1372-1379
  • 18 Poirot I, Laudy V, Rabilloud M. et al. Patterns of hip migration in non-ambulant children with cerebral palsy: A prospective cohort study. Ann Phys Rehabil Med 2020; 63 (05) 400-407
  • 19 Matos MA, Nascimento MAST, Merriman JW. Orthopaedic approach to the congenital Zika syndrome. Int Orthop 2021; 45 (03) 559-564
  • 20 Beals RK. Developmental changes in the femur and acetabulum in spastic paraplegia and diplegia. Dev Med Child Neurol 1969; 11 (03) 303-313
  • 21 Bobroff ED, Chambers HG, Sartoris DJ, Wyatt MP, Sutherland DH. Femoral anteversion and neck-shaft angle in children with cerebral palsy. Clin Orthop Relat Res 1999; (364) 194-204
  • 22 Nandhagopal T, De Cicco FL. Developmental Dysplasia of the Hip. In: StatPearls. Treasure Island (FL): StatPearls Publishing; ; October 3, 2022
  • 23 Chung MK, Zulkarnain A, Lee JB. et al. Functional status and amount of hip displacement independently affect acetabular dysplasia in cerebral palsy. Dev Med Child Neurol 2017; 59 (07) 743-749
  • 24 Barik S, Jain A, Nongdamba H. et al. Imaging Parameters of Hip Dysplasia in Cerebral Palsy: A Systematic Review. Indian J Orthop 2022; 56 (06) 939-951
  • 25 Huser A, Mo M, Hosseinzadeh P. Hip Surveillance in Children with Cerebral Palsy. Orthop Clin North Am 2018; 49 (02) 181-190
  • 26 Gordon GS, Simkiss DE. A systematic review of the evidence for hip surveillance in children with cerebral palsy. J Bone Joint Surg Br 2006; 88 (11) 1492-1496
  • 27 Ha M, Okamoto T, Fukuta T. et al. Preoperative radiologic predictors of successful soft tissue release surgery for hip subluxation among cerebral palsy patients: A STROBE compliant study. Medicine (Baltimore) 2018; 97 (33) e11847
  • 28 Almeida TDR, Carvalho PRC, Rolim Filho EL. et al. Avaliação da tenotomia no tratamento da subluxação do quadril de crianças com Zika. Acta Ortop Bras 2023; 31 (spe1): e256215
  • 29 Shore BJ, Yu X, Desai S, Selber P, Wolfe R, Graham HK. Adductor surgery to prevent hip displacement in children with cerebral palsy: the predictive role of the Gross Motor Function Classification System. J Bone Joint Surg Am 2012; 94 (04) 326-334