RSS-Feed abonnieren

DOI: 10.1055/s-0045-1806962
Formation of Streptococcus mutans Polymicrobial Biofilms in the Presence of Lactobacillus plantarum and Candida albicans
Authors

Abstract
Objective
Dental caries is an infectious disease that develops through biofilm. Streptococcus mutans is a cariogenic bacterium that can be found in dental plaque. Streptococcus mutans regulates biofilm formation and communicate with other microbes through a process called quorum sensing. Dental caries prevention can be achieved by inhibiting quorum sensing. This study aimed to investigate the ability of Lactobacillus plantarum and Candida albicans to inhibit the formation of S. mutans polymicrobial biofilms.
Materials and Methods
This study aims to investigate the ability of biofilm formation analyzed through the crystal violet (CV) assay and bacterial metabolic activity analyzed through the methylthiazol tetrazolium (MTT) assay. The bacteria used are S. mutans (serotype C), L. plantarum (FNCC 0020), and C. albicans.
Results
CV assay results show that in the presence of L. plantarum, biofilm formation in S. mutans decreases (9.5%). Meanwhile, the formation of S. mutans biofilms increased with the presence of C. albicans (28.8%). MTT assay results showed an increase in the metabolic activity of S. mutans in the presence of L. plantarum (20.2%) and C. albicans (19.4%).
Conclusion
Lactobacillus plantarum can inhibit the formation of S. mutans biofilms, while C. albicans can increase S. mutans biofilms.
Keywords
cariogenic biofilms - quorum sensing - Streptococcus mutans - Lactobacillus plantarum - Candida albicansPublikationsverlauf
Artikel online veröffentlicht:
02. Mai 2025
© 2025. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting unrestricted use, distribution, and reproduction so long as the original work is properly cited. (https://creativecommons.org/licenses/by/4.0/)
Thieme Medical and Scientific Publishers Pvt. Ltd.
A-12, 2nd Floor, Sector 2, Noida-201301 UP, India
-
References
- 1 Rather MA, Gupta K, Mandal M. Microbial biofilm: formation, architecture, antibiotic resistance, and control strategies. Braz J Microbiol 2021; 52 (04) 1701-1718
- 2 Kulshrestha A, Gupta P. Polymicrobial interaction in biofilm: mechanistic insights. Pathog Dis 2022; 80 (01) 1-10
- 3 Bowen WH, Burne RA, Wu H, Koo H. Oral biofilms: pathogens, matrix, and polymicrobial interactions in microenvironments. Trends Microbiol 2018; 26 (03) 229-242
- 4 Lin Y, Chen J, Zhou X, Li Y. Inhibition of Streptococcus mutans biofilm formation by strategies targeting the metabolism of exopolysaccharides. Crit Rev Microbiol 2021; 47 (05) 667-677
- 5 Zhang Q, Ma Q, Wang Y, Wu H, Zou J. Molecular mechanisms of inhibiting glucosyltransferases for biofilm formation in Streptococcus mutans . Int J Oral Sci 2021; 13 (01) 1-8
- 6 Suzuki Y, Nagasawa R, Senpuku H. Inhibiting effects of fructanase on competence-stimulating peptide-dependent quorum sensing system in Streptococcus mutans . J Infect Chemother 2017; 23 (09) 634-641
- 7 Sikdar R, Elias M. Quorum quenching enzymes and their effects on virulence, biofilm, and microbiomes: a review of recent advances. Expert Rev Anti Infect Ther 2020; 18 (12) 1221-1233
- 8 Pourhajibagher M, Alaeddini M, Etemad-Moghadam S. et al. Quorum quenching of Streptococcus mutans via the nano-quercetin-based antimicrobial photodynamic therapy as a potential target for cariogenic biofilm. BMC Microbiol 2022; 22 (01) 125
- 9 Wasfi R, Abd El-Rahman OA, Zafer MM, Ashour HM. Probiotic Lactobacillus sp. inhibit growth, biofilm formation and gene expression of caries-inducing Streptococcus mutans . J Cell Mol Med 2018; 22 (03) 1972-1983
- 10 Arias LS, Delbem ACB, Fernandes RA, Barbosa DB, Monteiro DR. Activity of tyrosol against single and mixed-species oral biofilms. J Appl Microbiol 2016; 120 (05) 1240-1249
- 11 Kriswandini IL. I D, Tantiana, et al. The forming of bacteria biofilm from Streptococcus mutans and Aggregatibacter actinomycetemcomitans as a marker for early detection in dental caries and periodontitis. Infect Dis Rep 2020; 12 (Suppl. 01) 8722
- 12 Azimi S, Klementiev AD, Whiteley M, Diggle SP. Bacterial quorum sensing during infection. Annu Rev Microbiol 2020; 74: 201-219
- 13 Kriswandini IL, Yuna R. Quorum sensing Streptococcus mutans and Lactobacillus salivarius (prospects of prevention of dental caries in the future): narrative review. Am J 2023; 3 (01) 20-22
- 14 Shanker E, Federle MJ. Quorum sensing regulation of competence and bacteriocins in Streptococcus pneumoniae and mutans . Genes (Basel) 2017; 8 (01) 15
- 15 Senadheera D, Cvitkovitch DG. Quorum sensing and biofilm formation by Streptococcus mutans . Adv Exp Med Biol 2008; 631: 178-188
- 16 Jiang L, Luo Y, Cao X, Liu W, Song G, Zhang Z. LuxS quorum sensing system mediating Lactobacillus plantarum probiotic characteristics. Arch Microbiol 2021; 203 (07) 4141-4148
- 17 Kim AR, Ahn KB, Yun CH. et al. Lactobacillus plantarum lipoteichoic acid inhibits oral multispecies biofilm. J Endod 2019; 45 (03) 310-315
- 18 Srivastava N, Ellepola K, Venkiteswaran N, Chai LYA, Ohshima T, Seneviratne CJ. Lactobacillus plantarum 108 inhibits streptococcus mutans and candida albicans mixed-species biofilm formation. Antibiotics (Basel) 2020; 9 (08) 1-20
- 19 Sztajer H, Szafranski SP, Tomasch J. et al. Cross-feeding and interkingdom communication in dual-species biofilms of Streptococcus mutans and Candida albicans . ISME J 2014; 8 (11) 2256-2271
- 20 Kim D, Sengupta A, Niepa TH. et al. Candida albicans stimulates Streptococcus mutans microcolony development via cross-kingdom biofilm-derived metabolites. Sci Rep 2017; 7: 41332
- 21 De Sordi L, Mühlschlegel FA. Quorum sensing and fungal-bacterial interactions in Candida albicans: a communicative network regulating microbial coexistence and virulence. FEMS Yeast Res 2009; 9 (07) 990-999
- 22 Tolker-Nielsen T. Biofilm development. Microbiol Spectr 2015; 3 (02) MB-0001-MB-2014
- 23 Zago CE, Silva S, Sanitá PV. et al. Dynamics of biofilm formation and the interaction between Candida albicans and methicillin-susceptible (MSSA) and -resistant Staphylococcus aureus (MRSA). PLoS One 2015; 10 (04) e0123206
