Subscribe to RSS

DOI: 10.1055/s-0045-1809895
Metabolic Crisis in Neurocritical Care: Definition, Classification, and Bundle of Therapeutic Interventions for the Acute and Hyperacute Stages

Abstract
Metabolic crisis in neurocritical care is a critical condition with significant implications for patient outcomes. This review provides a comprehensive examination of metabolic crisis, focusing on its definition, classification, and bundle of therapeutic interventions for the acute and hyperacute stages. A metabolic crisis is a severe metabolic disturbance that occurs in patients with acute neurological injuries, leading to an imbalance in energy substrates. This imbalance can exacerbate the initial neurological injury and result in poor patient outcomes. The metabolic crisis poses a significant threat to CNS function, leading to neuronal injury, oxidative stress, and other detrimental effects. Early detection and prompt intervention are crucial to effectively manage metabolic crisis, as delaying treatment can result in severe and irreversible consequences. Implementing a bundle approach is crucial for improving outcomes in the acute and hyperacute stages of metabolic crisis. Pharmacological interventions play a key role, such as using glucose-lowering agents to address hyperglycemia, administering antiepileptic drugs to control seizures, and utilizing sodium bicarbonate to correct metabolic acidosis. Non-pharmacological interventions are also vital, including strict glycemic control, optimization of oxygenation, ventilation, and perfusion, as well as temperature control to minimize secondary brain injury and promote neurological recovery.
Keywords
metabolic crisis - neurocritical care - neurotrauma - acute neurological injuries - bundle approachPublication History
Article published online:
26 June 2025
© 2025. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting unrestricted use, distribution, and reproduction so long as the original work is properly cited. (https://creativecommons.org/licenses/by/4.0/)
Thieme Medical and Scientific Publishers Pvt. Ltd.
A-12, 2nd Floor, Sector 2, Noida-201301 UP, India
-
References
- 1 Vink R, Faden AI, McIntosh TK. Changes in cellular bioenergetic state following graded traumatic brain injury in rats: determination by phosphorus 31 magnetic resonance spectroscopy. J Neurotrauma 1988; 5 (04) 315-330
- 2 Hovda DA, Yoshino A, Kawamata T, Katayama Y, Becker DP. Diffuse prolonged depression of cerebral oxidative metabolism following concussive brain injury in the rat: a cytochrome oxidase histochemistry study. Brain Res 1991; 567 (01) 1-10
- 3 Yoshino A, Hovda DA, Katayama Y, Kawamata T, Becker DP. Hippocampal CA3 lesion prevents postconcussive metabolic dysfunction in CA1. J Cereb Blood Flow Metab 1992; 12 (06) 996-1006
- 4 Kawamata T, Katayama Y, Aoyama N, Mori T. Heterogeneous mechanisms of early edema formation in cerebral contusion: diffusion MRI and ADC mapping study. Acta Neurochir Suppl (Wien) 2000; 76: 9-12
- 5 Hayes RL, Katayama Y, Jenkins LW. et al. Regional rates of glucose utilization in the cat following concussive head injury. J Neurotrauma 1988; 5 (02) 121-137
- 6 Bergsneider M, Hovda DA, Lee SM. et al. Dissociation of cerebral glucose metabolism and level of consciousness during the period of metabolic depression following human traumatic brain injury. J Neurotrauma 2000; 17 (05) 389-401
- 7 Bergsneider M, Hovda DA, McArthur DL. et al. Metabolic recovery following human traumatic brain injury based on FDG-PET: time course and relationship to neurological disability. J Head Trauma Rehabil 2001; 16 (02) 135-148
- 8 Mckee AC, Daneshvar DH. The neuropathology of traumatic brain injury. Handb Clin Neurol 2015; 127: 45-66
- 9 Giza CC, Hovda DA. The new neurometabolic cascade of concussion. Neurosurgery 2014; 75 (04, suppl 4): S24-S33
- 10 Carre E, Ogier M, Boret H, Montcriol A, Bourdon L, Jean-Jacques R. Metabolic crisis in severely head-injured patients: is ischemia just the tip of the iceberg?. Front Neurol 2013; 4: 146
- 11 Giza CC, Hovda DA. The neurometabolic cascade of concussion. J Athl Train 2001; 36 (03) 228-235
- 12 Sveinsson OA, Kjartansson O, Valdimarsson EM. Heilablóðþurrð/heiladrep: Faraldsfræði, orsakir og einkenni [Cerebral ischemia/infarction—epidemiology, causes and symptoms]. Laeknabladid 2014; 100 (05) 271-279
- 13 Yan EB, Hellewell SC, Bellander BM, Agyapomaa DA, Morganti-Kossmann MC. Post-traumatic hypoxia exacerbates neurological deficit, neuroinflammation and cerebral metabolism in rats with diffuse traumatic brain injury. J Neuroinflammation 2011; 8: 147
- 14 Kovács R, Gerevich Z, Friedman A. et al. Bioenergetic mechanisms of seizure control. Front Cell Neurosci 2018; 12: 335
- 15 Silva AHD, Belli A, Smith M. Electrolyte and endocrine disturbances. In: Smith MM, Citerio G. eds. Oxford Textbook of Neurocritical Care. Oxford University Press; 2016: 267-278
- 16 Hermanides J, Hong YT, Trivedi M. et al. Metabolic derangements are associated with impaired glucose delivery following traumatic brain injury. Brain 2021; 144 (11) 3492-3504
- 17 Rani V, Deep G, Singh RK, Palle K, Yadav UC. Oxidative stress and metabolic disorders: pathogenesis and therapeutic strategies. Life Sci 2016; 148: 183-193
- 18 Pandya JD, Leung LY, Yang X. et al. Comprehensive profile of acute mitochondrial dysfunction in a preclinical model of severe penetrating TBI. Front Neurol 2019; 10: 605
- 19 Hinzman JM, Wilson JA, Mazzeo AT, Bullock MR, Hartings JA. Excitotoxicity and metabolic crisis are associated with spreading depolarizations in severe traumatic brain injury patients. J Neurotrauma 2016; 33 (19) 1775-1783
- 20 de Lima Oliveira M, Paiva W, Teixeira MJ, Bor-Seng-Shu E. Brain metabolic crisis in traumatic brain injury: what does it mean?. J Neurotrauma 2014; 31 (20) 1750-1751
- 21 Mohamed S. Treatment strategies for acute metabolic disorders in neonates. Sudan J Paediatr 2011; 11 (02) 6-13
- 22 Kalra S, Bajwa SJ, Baruah M, Sehgal V. Hypoglycaemia in anesthesiology practice: diagnostic, preventive, and management strategies. Saudi J Anaesth 2013; 7 (04) 447-452
- 23 Mahmoodpoor A, Hamishehkar H, Beigmohammadi M. et al. Predisposing factors for hypoglycemia and its relation with mortality in critically ill patients undergoing insulin therapy in an intensive care unit. Anesth Pain Med 2016; 6 (01) e33849
- 24 Chow L, Seaquist ER. How significant is severe hypoglycemia in older adults with diabetes?. Diabetes Care 2020; 43 (03) 512-514
- 25 Islam MN, Hossain MA, Yeasmin L, Dutta A, Ahmad F, Khan RH. Clinical profile and biochemical abnormalities of neonatal seizure at NICU of a tertiary care hospital. Mymensingh Med J 2016; 25 (03) 445-449
- 26 Zhao H, Ying HL, Zhang C, Zhang S. Relative hypoglycemia is associated with delirium in critically ill patients with diabetes: a cohort study. Diabetes Metab Syndr Obes 2022; 15: 3339-3346
- 27 Patel AH, Pittas AG. Does glycemic control with insulin therapy play a role for critically ill patients in hospital?. CMAJ 2006; 174 (07) 917-918
- 28 Endo K, Itoh T, Tanno M. et al. Characteristics of patients with emergency attendance for severe hypoglycemia and hyperglycemia in a general hospital in Japan. Medicine (Baltimore) 2021; 100 (25) e26505
- 29 Ezeani Iu, Eregie A, Ogedengbe O. Treatment outcome and prognostic indices in patients with hyperglycemic emergencies. Diabetes Metab Syndr Obes 2013; 6: 303-307
- 30 Yogaratnam J, Jacob R, Naik S, Magadi H, Sim K. Prolonged delirium secondary to hypoxic-ischemic encephalopathy following cardiac arrest. Clin Psychopharmacol Neurosci 2013; 11 (01) 39-42
- 31 Meloni BP. Pathophysiology and neuroprotective strategies in hypoxic-ischemic brain injury and stroke. Brain Sci 2017; 7 (08) 110
- 32 Bindu B, Kapoor I, Bindra A. An unusual case of paediatric cerebral anoxia!. J Neuroanaesth Crit Care 2016; 3 (01) 58
- 33 Biradar SM, Holyachi R, Teja VR. Severe metabolic acidosis in critically ill patients and its association with the outcome in North Karnataka. International Journal of Advances in Medicine 2021; 8 (03) 395
- 34 Moviat M, van Haren F, van der Hoeven H. Conventional or physicochemical approach in intensive care unit patients with metabolic acidosis. Crit Care 2003; 7 (03) R41-R45
- 35 Mocan M, Terheş LM, Blaga SN. Difficulties in the diagnosis and management of hyponatremia. Clujul Med 2016; 89 (04) 464-469
- 36 Buffington MA, Abreo K. Hyponatremia: a review. J Intensive Care Med 2016; 31 (04) 223-236
- 37 Diringer M. Neurologic manifestations of major electrolyte abnormalities. Handb Clin Neurol 2017; 141: 705-713
- 38 Laville M, Burst V, Peri A, Verbalis JG. Hyponatremia secondary to the syndrome of inappropriate secretion of antidiuretic hormone (SIADH): therapeutic decision-making in real-life cases. Clin Kidney J 2013; 6 (Suppl. 01) i1-i20
- 39 Sobey CG, Faraci FM. Subarachnoid haemorrhage: what happens to the cerebral arteries?. Clin Exp Pharmacol Physiol 1998; 25 (11) 867-876
- 40 Zhang H, Cook D. Cerebral vascular smooth muscle potassium channels and their possible role in the management of vasospasm. Pharmacol Toxicol 1994; 75 (06) 327-336
- 41 Kitazono T, Faraci FM, Taguchi H, Heistad DD. Role of potassium channels in cerebral blood vessels. Stroke 1995; 26 (09) 1713-1723
- 42 Marra A, Ely EW, Pandharipande PP, Patel MB. The ABCDEF bundle in critical care. Crit Care Clin 2017; 33 (02) 225-243
- 43 Pinto F, Biancofiore G. The ABCDE bundle: a survey of nurses knowledge and attitudes in the intensive care units of a national teaching hospital in Italy. Dimensions of Critical Care Nursing 2016; 35 (06) 309-314
- 44 Sosnowski K, Lin F, Chaboyer W, Ranse K, Heffernan A, Mitchell M. The effect of the ABCDE/ABCDEF bundle on delirium, functional outcomes, and quality of life in critically ill patients: a systematic review and meta-analysis. Int J Nurs Stud 2023; 138: 104410
- 45 http://www.redcps.com.br/detalhes/93
- 46 Cais DP, Mourão R. The impact of the implementation of bundle in the prevention of ventilator-associated pneumonia in intensive care units. BMC Proc 2011; 5 (Suppl. 06) P70
- 47 Venkatesh B, Schlapbach L, Mason D. et al. Impact of 1-hour and 3-hour sepsis time bundles on patient outcomes and antimicrobial use: a before and after cohort study. Lancet Reg Health West Pac 2021; 18: 100305
- 48 Kramer AH, Roberts DJ, Zygun DA. Optimal glycemic control in neurocritical care patients: a systematic review and meta-analysis. Crit Care 2012; 16 (05) R203
- 49 Goldenberg MM. Overview of drugs used for epilepsy and seizures: etiology, diagnosis, and treatment. P&T 2010; 35 (07) 392-415
- 50 Adeva-Andany MM, Fernández-Fernández C, Mouriño-Bayolo D, Castro-Quintela E, Domínguez-Montero A. Sodium bicarbonate therapy in patients with metabolic acidosis. ScientificWorldJournal 2014; 2014: 627673
- 51 Herbel G, Boyle PJ. Hypoglycemia. Pathophysiology and treatment. Endocrinol Metab Clin North Am 2000; 29 (04) 725-743
- 52 Levraut J, Grimaud D. Treatment of metabolic acidosis. Curr Opin Crit Care 2003; 9 (04) 260-265
- 53 Smith TJ, Johnson CR, Koshy R. et al. Thiamine deficiency disorders: a clinical perspective. Ann N Y Acad Sci 2021; 1498 (01) 9-28
- 54 van der Sijs IH, Ho-Dac-Pannekeet MM. De behandeling van hypomagnesiëmie [The treatment of hypomagnesemia]. Ned Tijdschr Geneeskd 2002; 146 (20) 934-938
- 55 Gschwind M, Seeck M. Modern management of seizures and epilepsy. Swiss Med Wkly 2016; 146: w14310
- 56 Cook AM, Morgan Jones G, Hawryluk GWJ. et al. Guidelines for the acute treatment of cerebral edema in neurocritical care patients. Neurocrit Care 2020; 32 (03) 647-666
- 57 Kurtz P, Rocha EEM. Nutrition therapy, glucose control, and brain metabolism in traumatic brain injury: a multimodal monitoring approach. Front Neurosci 2020; 14: 190
- 58 De Georgia MA. Brain tissue oxygen monitoring in neurocritical care. J Intensive Care Med 2015; 30 (08) 473-483
- 59 Battaglini D, Siwicka Gieroba D, Brunetti I. et al. Mechanical ventilation in neurocritical care setting: a clinical approach. Best Pract Res Clin Anaesthesiol 2021; 35 (02) 207-220
- 60 Velle F, Lewén A, Howells T, Hånell A, Nilsson P, Enblad P. Cerebral pressure autoregulation and optimal cerebral perfusion pressure during neurocritical care of children with traumatic brain injury. J Neurosurg Pediatr 2023; 31 (05) 503-513
- 61 Muengtaweepongsa S, Srivilaithon W. Targeted temperature management in neurological intensive care unit. World J Methodol 2017; 7 (02) 55-67
- 62 Heldt T, Zoerle T, Teichmann D, Stocchetti N. Intracranial pressure and intracranial elastance monitoring in neurocritical care. Annu Rev Biomed Eng 2019; 21: 523-549
- 63 Rajajee V, Díaz-Gómez JL. Critical care ultrasound should be a priority first-line assessment tool in neurocritical care. Crit Care Med 2019; 47 (06) 833-836
- 64 Musick S, Alberico A. Neurologic assessment of the neurocritical care patient. Front Neurol 2021; 12: 588989
- 65 Marklund N. The neurological wake-up test—a role in neurocritical care monitoring of traumatic brain injury patients?. Front Neurol 2017; 8: 540