Subscribe to RSS
DOI: 10.1055/s-0045-1811093
Künstliche Intelligenz-basierte Erkennung von interventionellen Phasen bei der endoskopischen Submukosadissektion
Authors
Einleitung: Die endoskopische Submukosadissektion (ESD) ist ein komplexes endoskopisches Verfahren, das technische Expertise erfordert. Objektive Methoden zur Analyse von interventionellen Abläufen bei ESD könnten für Qualitätssicherung und Ausbildung, wie auch eine automatische Befunderstellung von Nutzen sein.
Ziele: In dieser Studie wurde ein KI-Algorithmus für die Erkennung und Klassifizierung der interventionellen Phasen der ESD entwickelt, um die technische Basis für eine standardisierte Leistungsbewertung und automatische Befunderstellung zu schaffen.
Methodik: Vollständige ESD-Videoaufnahmen von 49 Patienten wurden retrospektiv zusammengestellt. Der Datensatz umfasste 6.390.151 Einzelbilder, die alle für die folgenden interventionellen Phasen annotiert wurden: Diagnostik, Markierung, Injektion, Dissektion und Hämostase. 3.973.712 Bilder (28 Patienten) wurden für das Training eines Video-Swin-Transformers genutzt. Dabei wurde temporale Information durch standardisierte BIldextraktion in festgelegten zeitlichen Abständen zum analysierten Bild inkorporiert. 2.416.439 separate Bilder (21 Patienten) wurden für eine interne Validierung genutzt.
Ergebnis: Bei der internen Evaluation erreichte das System insgesamt einen F1-Wert von 0,88. Es wurden F1-Werte von 0,99, 0,89, 0,89, 0,91 und 0,52 für Diagnostik, Markierung, Injektion, Dissektion bzw. Blutungsmanagement gemessen. Die Sensitivitäten für dieselben Parameter betrugen 1,00, 0,80, 0,94, 0,89 und 0,67, die Spezifitäten lagen bei 1,00, 1,00, 0,98, 0,88 und 0,93. Positive prädiktive Werte wurden mit 0,98, 1,00, 0,85, 0,94 und 0,43 gemessen.
Schlussfolgerung: In dieser vorläufigen Studie zeigte ein KI-Algorithmus eine hohe Leistungsfähigkeit für die Einzelbild-Erkennung von Verfahrensphasen während der ESD. Die vergleichsweise niedrige Leistung für die Blutungsphase wurde auf das seltene Auftreten von Blutungsepisoden im Trainingsdatensatz zurückgeführt, der zu diesem Zeitpunkt nur Videos in voller Länge umfasste. Die zukünftige Entwicklung des Algorithmus wird sich auf die Reduzierung von Klassenungleichgewichten durch selektive Annotationsprotokolle konzentrieren.
Informationen zum Einsatz von KI: Für die Erstellung des Abstracts wurde KI eingesetzt.
Publication History
Article published online:
04 September 2025
© 2025. Thieme. All rights reserved.
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany