Subscribe to RSS

DOI: 10.1055/s-0045-1811233
The neuroscience of music perception: a narrative review

Abstract
The present review article explores the neuroscience of musical perception, examining the roles of specific brain regions in decoding and interpreting music. Musical perception engages multiple cortical and subcortical areas that work in an integrated manner to process musical elements such as melody, harmony, and rhythm. The paper reviews the current knowledge about the brain circuits involved, as well as pathological conditions that result in abnormalities of musical perception. In addition, the relationship between musical perception and neurological conditions such as epilepsy and Alzheimer's disease is explored. The present review is based on findings from structural and functional neuroimaging studies, neuropsychology, neurophysiology, and clinical research, aiming to show how the brain transforms music sounds into meaningful experiences and addressing pathological conditions in which this complex process may be affected, either in isolation or in association with other forms of neurological impairment.
Authors' Contributions
Conceptualization: RBD, LAD, VRP, JLP; Formal analysis: RBD, VRP, JLP; Investigation: RBD, LAD, VRP, JLP; Methodology: RBD, LAD, JLP; Project administration: RBD, VRP, JLP; Resources: RBD, VRP; Software: LAD, VRP; Supervision: RBD, LAD, VRP, JLP; Validation: RBD, LAD, VRP, JLP; Visualization: RBD, VRP, JLP; Writing – original draft: RBD, LAD, VRP, JLP; Writing – review & editing: RBD, LAD, VRP, JLP.
Data Availability Statement
The data that supports the findings of the present study are available fromthe corresponding author upon reasonable request.
Editor-in-Chief: Hélio A. G. Teive (https://orcid.org/0000-0003-2305-1073).
Associate Editor: Renato Puppi Munhoz (https://orcid.org/0000-0002-4783-4067).
Publication History
Received: 20 December 2024
Accepted: 16 June 2025
Article published online:
31 August 2025
© 2025. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution 4.0 International License, permitting copying and reproduction so long as the original work is given appropriate credit (https://creativecommons.org/licenses/by/4.0/)
Thieme Revinter Publicações Ltda.
Rua Rego Freitas, 175, loja 1, República, São Paulo, SP, CEP 01220-010, Brazil
Renan Barros Domingues, Luísa Aires Domingues, Victor Rebelo Procaci, José Luiz Pedroso. The neuroscience of music perception: a narrative review. Arq Neuropsiquiatr 2025; 83: s00451811233.
DOI: 10.1055/s-0045-1811233
-
References
- 1 Conard NJ, Malina M, Münzel SC. New flutes document the earliest musical tradition in southwestern Germany. Nature 2009; 460 (7256) 737-740
- 2 Malloch S, Trevarthen C. The Human Nature of Music. Front Psychol 2018; 9: 1680
- 3 Reybrouck M, Vuust P, Brattico E. Brain Connectivity Networks and the Aesthetic Experience of Music. Brain Sci 2018; 8 (06) 107
- 4 Järvelä I. Genomics studies on musical aptitude, music perception, and practice. Ann N Y Acad Sci 2018; ••• : Epub ahead of print
- 5 Bowling DL. Biological principles for music and mental health. Transl Psychiatry 2023; 13 (01) 374
- 6 Kaas JH, Hackett TA. Subdivisions of auditory cortex and processing streams in primates. Proc Natl Acad Sci U S A 2000; 97 (22) 11793-11799
- 7 Sankaran N, Leonard MK, Theunissen F, Chang EF. Encoding of melody in the human auditory cortex. Sci Adv 2024; 10 (07) eadk0010
- 8 Griffiths TD, Warren JD. The planum temporale as a computational hub. Trends Neurosci 2002; 25 (07) 348-353
- 9 Pehrs C, Deserno L, Bakels JH, Schlochtermeier LH, Kappelhoff H, Jacobs AM. et al. How music alters a kiss: superior temporal gyrus controls fusiform-amygdalar effective connectivity. Soc Cogn Affect Neurosci 2014; 9 (11) 1770-1778
- 10 Zatorre RJ, Halpern AR. Mental concerts: musical imagery and auditory cortex. Neuron 2005; 47 (01) 9-12
- 11 Blood AJ, Zatorre RJ. Intensely pleasurable responses to music correlate with activity in brain regions implicated in reward and emotion. Proc Natl Acad Sci U S A 2001; 98 (20) 11818-11823
- 12 Foo F, King-Stephens D, Weber P, Laxer K, Parvizi J, Knight RT. Differential Processing of Consonance and Dissonance within the Human Superior Temporal Gyrus. Front Hum Neurosci 2016; 10: 154
- 13 Kasdan AV, Burgess AN, Pizzagalli F, Scartozzi A, Chern A, Kotz SA. et al. Identifying a brain network for musical rhythm: A functional neuroimaging meta-analysis and systematic review. Neurosci Biobehav Rev 2022; 136: 104588
- 14 Grahn JA, Brett M. Rhythm and beat perception in motor areas of the brain. J Cogn Neurosci 2007; 19 (05) 893-906
- 15 Hoddinott JD, Grahn JA. Neural representations of beat and rhythm in motor and association regions. Cereb Cortex 2024; 34 (10) bhae406
- 16 Grahn JA. The role of the basal ganglia in beat perception: neuroimaging and neuropsychological investigations. Ann N Y Acad Sci 2009; 1169: 35-45
- 17 Ross JM, Iversen JR, Balasubramaniam R. The Role of Posterior Parietal Cortex in Beat-based Timing Perception: A Continuous Theta Burst Stimulation Study. J Cogn Neurosci 2018; 30 (05) 634-643
- 18 Zatorre RJ, Salimpoor VN. From perception to pleasure: music and its neural substrates. Proc Natl Acad Sci U S A 2013; 110 (Suppl 2, Suppl 2) 10430-10437
- 19 Koelsch S. Toward a neural basis of music perception - a review and updated model. Front Psychol 2011; 2: 110
- 20 Reybrouck M, Vuust P, Brattico E. Brain Connectivity Networks and the Aesthetic Experience of Music. Brain Sci 2018; 8 (06) 107
- 21 Vuust P, Ostergaard L, Pallesen KJ, Bailey C, Roepstorff A. Predictive coding of music–brain responses to rhythmic incongruity. Cortex 2009; 45 (01) 80-92
- 22 Brattico E, Tervaniemi M, Näätänen R, Peretz I. Musical scale properties are automatically processed in the human auditory cortex. Brain Res 2006; 1117 (01) 162-174
- 23 Zatorre RJ, Chen JL, Penhune VB. When the brain plays music: auditory-motor interactions in music perception and production. Nat Rev Neurosci 2007; 8 (07) 547-558
- 24 Basiński K, Quiroga-Martinez DR, Vuust P. Temporal hierarchies in the predictive processing of melody - From pure tones to songs. Neurosci Biobehav Rev 2023; 145: 105007
- 25 Bravo F, Cross I, Hopkins C, Gonzalez N, Docampo J, Bruno C, Stamatakis EA. Anterior cingulate and medial prefrontal cortex response to systematically controlled tonal dissonance during passive music listening. Hum Brain Mapp 2020; 41 (01) 46-66
- 26 Schaefer HE. Music-Evoked Emotions-Current Studies. Front Neurosci 2017; 11: 600
- 27 Mizuno T, Sugishita M. Neural correlates underlying perception of tonality-related emotional contents. Neuroreport 2007; 18 (16) 1651-1655
- 28 Nunes-Silva M, Haase VG. Montreal Battery of Evaluation of Amusia: Validity evidence and norms for adolescents in Belo Horizonte, Minas Gerais, Brazil. Dement Neuropsychol 2012; 6 (04) 244-252
- 29 Peretz I, Ayotte J, Zatorre RJ, Mehler J, Ahad P, Penhune VB, Jutras B. Congenital amusia: a disorder of fine-grained pitch discrimination. Neuron 2002; 33 (02) 185-191
- 30 Ayotte J, Peretz I, Hyde K. Congenital amusia: a group study of adults afflicted with a music-specific disorder. Brain 2002; 125 (Pt 2): 238-251
- 31 Peretz I. Neurobiology of Congenital Amusia. Trends Cogn Sci 2016; 20 (11) 857-867
- 32 Albouy P, Mattout J, Bouet R, Maby E, Sanchez G, Aguera PE. et al. Impaired pitch perception and memory in congenital amusia: the deficit starts in the auditory cortex. Brain 2013; 136 (Pt 5): 1639-1661
- 33 Hyde KL, Peretz I. Brains that are out of tune but in time. Psychol Sci 2004; 15 (05) 356-360
- 34 Münte TF. Brains out of tune. Nature 2002; 415 (6872) 589-590
- 35 Wang J, Zhang C, Wan S, Peng G. Is Congenital Amusia a Disconnection Syndrome? A Study Combining Tract- and Network-Based Analysis. Front Hum Neurosci 2017; 11: 473
- 36 Liao X, Sun J, Jin Z, Wu D, Liu J. Cortical Morphological Changes in Congenital Amusia: Surface-Based Analyses. Front Psychiatry 2022; 12: 721720
- 37 Seesjärvi E, Särkämö T, Vuoksimaa E, Tervaniemi M, Peretz I, Kaprio J. The Nature and Nurture of Melody: A Twin Study of Musical Pitch and Rhythm Perception. Behav Genet 2016; 46 (04) 506-515
- 38 Szyfter K, Wigowska-Sowińska J. Congenital amusia-pathology of musical disorder. J Appl Genet 2022; 63 (01) 127-131
- 39 Stewart L, von Kriegstein K, Warren JD, Griffiths TD. Music and the brain: disorders of musical listening. Brain 2006; 129 (Pt 10): 2533-2553
- 40 Vitturi BK, Sanvito WL. Maurice Ravel's dementia: the silence of a genius. Arq Neuropsiquiatr 2019; 77 (02) 136-138
- 41 Zatorre RJ, Perry DW, Beckett CA, Westbury CF, Evans AC. Functional anatomy of musical processing in listeners with absolute pitch and relative pitch. Proc Natl Acad Sci U S A 1998; 95 (06) 3172-3177
- 42 Tseng HC, Hsieh IH. Effects of absolute pitch on brain activation and functional connectivity during hearing-in-noise perception. Cortex 2024; 174: 1-18
- 43 Dohn A, Garza-Villarreal EA, Chakravarty MM, Hansen M, Lerch JP, Vuust P. Gray- and white-matter anatomy of absolute pitch possessors. Cereb Cortex 2015; 25 (05) 1379-1388
- 44 Theusch E, Gitschier J. Absolute pitch twin study and segregation analysis. Twin Res Hum Genet 2011; 14 (02) 173-178
- 45 Szyfter K, Witt MP. How far musicality and perfect pitch are derived from genetic factors?. J Appl Genet 2020; 61 (03) 407-414
- 46 Bairnsfather JE, Ullén F, Osborne MS, Wilson SJ, Mosing MA. Investigating the Relationship Between Childhood Music Practice and Pitch-Naming Ability in Professional Musicians and a Population-Based Twin Sample. Twin Res Hum Genet 2022; 25 (03) 140-148
- 47 Wong YK, Lui KFH, Yip KHM, Wong AC. Is it impossible to acquire absolute pitch in adulthood?. Atten Percept Psychophys 2020; 82 (03) 1407-1430
- 48 Maguire M. Epilepsy and music: practical notes. Pract Neurol 2017; 17 (02) 86-95
- 49 Bedetti C, Principi M, Di Renzo A, Muti M, Frondizi D, Piccirilli M. et al. The Effect of Mozart's Music in Severe Epilepsy: Functional and Morphological Features. Psychiatr Danub 2019; 31 (Suppl. 03) 467-474
- 50 Avanzini G. Musicogenic seizures. Ann N Y Acad Sci 2003; 999: 95-102
- 51 Diekmann V, Hoppner AC. Cortical network dysfunction in musicogenic epilepsy reflecting the role of snowballing emotional processes in seizure generation: an fMRI-EEG study. Epileptic Disord 2014; 16 (01) 31-44
- 52 Mórocz IA, Karni A, Haut S, Lantos G, Liu G. fMRI of triggerable aurae in musicogenic epilepsy. Neurology 2003; 60 (04) 705-709
- 53 Tayah TF, Abou-Khalil B, Gilliam FG, Knowlton RC, Wushensky CA, Gallagher MJ. Musicogenic seizures can arise from multiple temporal lobe foci: intracranial EEG analyses of three patients. Epilepsia 2006; 47 (08) 1402-1406
- 54 Lewis-Smith D, Jaiser SR, Thomas RH. Autoimmune musicogenic bilateral temporal lobe epilepsy. Epileptic Disord 2022; 24 (05) 961-964
- 55 Smith KM, Zalewski NL, Budhram A, Britton JW, So E, Cascino GD. et al. Musicogenic epilepsy: Expanding the spectrum of glutamic acid decarboxylase 65 neurological autoimmunity. Epilepsia 2021; 62 (05) e76-e81
- 56 Coebergh JAF, Lauw RF, Sommer IEC, Blom JD. Musical hallucinations and their relation with epilepsy. J Neurol 2019; 266 (06) 1501-1515
- 57 Bartolomei F, McGonigal A, Guye M, Guedj E, Chauvel P. Clinical and anatomic characteristics of humming and singing in partial seizures. Neurology 2007; 69 (05) 490-492
- 58 Evers S. Musical hallucinations. Curr Psychiatry Rep 2006; 8 (03) 205-210
- 59 Gordon AG. Do musical hallucinations always arise from the inner ear?. Med Hypotheses 1997; 49 (02) 111-122
- 60 Coebergh JA, Lauw RF, Bots R, Sommer IE, Blom JD. Musical hallucinations: review of treatment effects. Front Psychol 2015; 6: 814
- 61 D N, D L, B LD, C P, S HB. Echoes of the Mind: Auditory Charles Bonnet Syndrome. Cureus 2024; 16 (08) e66120
- 62 Warner N, Aziz V. Hymns and arias: musical hallucinations in older people in Wales. Int J Geriatr Psychiatry 2005; 20 (07) 658-660
- 63 Bakewell B, Johnson M, Lee M, Tchernogorova E, Taysom J, Zhong Q. Drug-induced musical hallucination. Front Pharmacol 2024; 15: 1401237
- 64 Limphaibool N, Maciejewska B, Kowal P, Kozubski W, Iwanowski P. Musical hallucinations in cerebrovascular disease. Postepy Psychiatr Neurol 2021; 30 (03) 177-182
- 65 Esfahani-Bayerl N, Finke C, Kopp U, Moon DU, Ploner CJ. Musical memory and hippocampus revisited: Evidence from a musical layperson with highly selective hippocampal damage. Cortex 2019; 119: 519-527
- 66 Groussard M, Viader F, Hubert V, Landeau B, Abbas A, Desgranges B. et al. Musical and verbal semantic memory: two distinct neural networks?. Neuroimage 2010; 49 (03) 2764-2773
- 67 Koelsch S. Brain correlates of music-evoked emotions. Nat Rev Neurosci 2014; 15 (03) 170-180
- 68 Tirigay R, Moltrasio J, Rubinstein W. Dissociations between musical semantic memory and verbal memory in a patient with behavioral variant frontotemporal dementia. Appl Neuropsychol Adult 2025; 32 (01) 75-84
- 69 Crystal HA, Grober E, Masur D. Preservation of musical memory in Alzheimer's disease. J Neurol Neurosurg Psychiatry 1989; 52 (12) 1415-1416
- 70 Cuddy LL, Sikka R, Vanstone A. Preservation of musical memory and engagement in healthy aging and Alzheimer's disease. Ann N Y Acad Sci 2015; 1337: 223-231
- 71 Basaglia-Pappas S, Laterza M, Borg C, Richard-Mornas A, Favre E, Thomas-Antérion C. Exploration of verbal and non-verbal semantic knowledge and autobiographical memories starting from popular songs in Alzheimer's disease. Int Psychogeriatr 2013; 25 (05) 785-795
- 72 Hsieh S, Hornberger M, Piguet O, Hodges JR. Neural basis of music knowledge: evidence from the dementias. Brain 2011; 134 (Pt 9): 2523-2534
- 73 Jacobsen JH, Stelzer J, Fritz TH, Chételat G, La Joie R, Turner R. Why musical memory can be preserved in advanced Alzheimer's disease. Brain 2015; 138 (Pt 8): 2438-2450
- 74 Groussard M, Chan TG, Coppalle R, Platel H. Preservation of Musical Memory Throughout the Progression of Alzheimer's Disease? Toward a Reconciliation of Theoretical, Clinical, and Neuroimaging Evidence. J Alzheimers Dis 2019; 68 (03) 857-883
- 75 Thaut MH, Fischer CE, Leggieri M, Vuong V, Churchill NW, Fornazzari LR, Schweizer TA. Neural Basis of Long-term Musical Memory in Cognitively Impaired Older Persons. Alzheimer Dis Assoc Disord 2020; 34 (03) 267-271
- 76 James CE, Altenmüller E, Kliegel M, Krüger THC, Van De Ville D, Worschech F. et al. Train the brain with music (TBM): brain plasticity and cognitive benefits induced by musical training in elderly people in Germany and Switzerland, a study protocol for an RCT comparing musical instrumental practice to sensitization to music. BMC Geriatr 2020; 20 (01) 418
- 77 Bleibel M, El Cheikh A, Sadier NS, Abou-Abbas L. The effect of music therapy on cognitive functions in patients with Alzheimer's disease: a systematic review of randomized controlled trials. Alzheimers Res Ther 2023; 15 (01) 65
- 78 Arrasmith K. Infant Music Development and Music Experiences: A Literature Review. Update. Applications of Research in Music Education 2020; 38 (03) 9-17