Anästhesiol Intensivmed Notfallmed Schmerzther 1999; 34(7): 391-395
DOI: 10.1055/s-1999-197
ÜBERSICHT
Georg Thieme Verlag Stuttgart ·New York

Bedeutung und Perspektiven der Atemgasanalytik

Importance and Perspectives of Breath Analysis J. K. Schubert, K. Geiger
  • Anästhesiologische Universitätsklinik Freiburg
Further Information

Publication History

Publication Date:
31 December 1999 (online)

Zusammenfassung.

Metabolische und inflammatorische Prozesse spiegeln sich in der chemischen Zusammensetzung der menschlichen Atemluft wider. Zusammenhänge zwischen den Konzentrationen einzelner Substanzen und entzündlichen Vorgängen, Zuständen erhöhter oxidativer Aktivität, Aufnahme inhalativer oder oraler Noxen, aber auch komplexen Krankheitsbildern wie ARDS, Pneumonie oder Schlafapnoe wurden in den letzten Jahren beschrieben. Die klinische Interpretation der Ergebnisse ist jedoch schwierig, da eindeutige Markersubstanzen für bestimmte Krankheitszustände fehlen, Konzentrationsänderungen der volatilen Komponenten unter verschiedensten Bedingungen eintreten und die Meßergebnisse eine erhebliche Streubreite aufweisen. Ursachen liegen in der aufwendigen Analysentechnik, den niedrigen Substanzkonzentrationen, der daraus resultierenden Anfälligkeit gegenüber geringsten Verunreinigungen und der schwierigen Zuordnung der Substanzen. Es gilt zu unterscheiden zwischen Substanzen, die im Patienten entstehen und solchen, die aus der Umgebungsluft und dem Beatmungssystem stammen. Trotz der genannten Einschränkungen besteht kein Zweifel, daß Zusammenhänge zwischen der chemischen Zusammensetzung der Ausatemluft und klinischen Parametern bestehen. Optimaler Einsatz der bestehenden analytischen Möglichkeiten sowie die sich abzeichnenden Fortschritte in der Analysentechnik, betreffend Extraktion bzw. Präkonzentration der nur in Spuren im Atemgas enthaltenen Substanzen und Miniaturisierung der Geräte mit der Möglichkeit des patientennahen Einsatzes bieten ein interessantes Potential für Frühdiagnostik von Erkrankungen und Erforschung von Pathomechanismen mittels eines nichtinvasiven Verfahrens.

Quantitative chemical analysis of volatile constituents in exhaled gas can provide useful insights into biochemical processes in the body. Relations between the chemical composition of human exhaled air and inflammatory processes, states of high oxidative activity, inhalation or ingestion of various noxious substances as well as diseases like ARDS, pneumonia or sleep apnea have been described. Clinical interpretation of these findings, however, remains difficult because definite marker substances for certain diseases could not yet be identified, substance concentrations in the exhaled air change under various conditions, and results vary in a wide range. Because of very low substance concentrations in the exhaled air sophisticated analytical techniques are necessary. Analyses are hampered by high water content and numerous contaminants in the samples. A clear distinction has to be made between substances originating from within the patient and those coming from outside of the body. Despite all these limitations there is no doubt that relations exist between the chemical composition of human exhaled air and clinical parameters. Upcoming new analytical techniques will allow more efficient extraction and preconcentration of substances in minute concentrations. Fast track bedside analyses will shortly become possible with the introduction of miniature gas chromatographic and mass spectrometric equipment. This will open a new area for clinical and basic research.

Literatur

  • 1 Lebovitz HE. Diabetic ketoacidosis.  Lancet. 1995;  345 767-772
  • 2 Tangerman A, Meuwese-Arends MT, Tongeren JH. New methods for the release of volatile sulfur compounds from human serum: its determination by Tenax trapping and gas chromatography and its application in liver diseases.  J. Lab. Clin. Med.. 1985;  106 175-182
  • 3 Chen S, Zieve L, Mahadevan V. Mercaptans and dimethyl sulfide in the breath of patients with cirrhosis of the liver. Effect of feeding methionine.  J. Lab. Clin. Med.. 1970;  75 628-635
  • 4 Simenhoff ML, Burke JF, Saukkonen JJ, Ordinario AT, Doty R. Biochemical profile of uremic breath.  N. Engl. J. Med.. 1977;  297 132-134
  • 5 Eger EI II. Isoflurane: A review.  Anesthesiology. 1981;  55 559-576
  • 6 Eger EI II. The pharmacology of isoflurane.  Br. J. Anaesth.. 1984;  56 71-99
  • 7 Eger EI II, Bahlman SH. Is the end-tidal anesthetic partial pressure an accurate measure of the arterial anesthetic partial pressure?.  Anesthesiology. 1971;  35 301-303
  • 8 Phillips M. Method for the collection and assay of volatile organic compounds in breath.  Anal. Biochem.. 1997;  247 272-278
  • 9 Miekisch W, Schubert J, Müller WPE, Geiger K. Breath analysis in mechanically ventilated patients: comparison of different methods.  Proceedings of the 20th International Symposium on Capillary Chromatography, Riva del Garda, Italy. 1998;  May 26-29
  • 10 Morita S, Snider MT, Inada Y. Increased n-pentane excretion in humans: A consequence of pulmonary oxygen exposure.  Anesthesiology. 1986;  64 730-733
  • 11 Frankel EN. Volatile lipid oxidation products.  Prog. Lipid. Res.. 1982;  22 1-33
  • 12 Kneepkens CMF, Lepage G, Roy CC. The potential of the hydrocarbon breath test as a measure of lipid peroxidation.  Free Radic Biol. Med.. 1994;  17 127-160
  • 13 Kokoszka J, Nelson RL, Swedler WI, Skosey J, Abcarian H. Determination of inflammatory bowel disease activity by breath pentane analysis.  Dis. Colon. Rectum.. 1993;  36 597-601
  • 14 Van-Rij AM, Wade CR. In vivo lipid peroxidation in man as measured by the respiratory excretion of ethane, pentane, and other low-molecular-weight hydrocarbons.  Anal. Biochem.. 1985;  150 1-7
  • 15 Van Gossum A, Decuyper J. Breath alkanes as an index of lipid peroxidation.  Eur. Respir. J.. 1989;  2 787-791
  • 16 Weitz ZW, Birnbaum AJ, Sobotka PA, Zarling EJ, Skosey JL. High breath pentane concentrations during acute myocardial infarction.  Lancet. 1991;  337 933-935
  • 17 Mendis S, Sobotka PA, Euler DE. Expired hydrocarbons in patients with acute myocardial infarction.  Free Radical Res.. 1995;  23 117-122
  • 18 Sobotka PA, Brottman MD, Weitz Z, Birnbaum AJ, Skosey JL, Zarling EJ. Elevated breath pentane in heart failure reduced by free radical scavenger.  Free Radical Biol. Med.. 1993;  14 643-647
  • 19 Kazui M, Andreoni KA, Norris EJ, Klein AS, Burdick JF, Beattie C, Sehnert SS, Bell WR, Bulkley GB, Risby TH. Breath ethane: a specific indicator of free-radical-mediated lipid peroxidation following reperfusion of the ischemic liver.  Free Radical Biol. Med.. 1992;  13 509-515
  • 20 Euler DE, Dave SJ, Guo HS. Effect of cigarette smoking on pentane excretion in alveolar breath.  Clin. Chem.. 1996;  42 303-308
  • 21 Miller ER 3rd, Appel LJ, Jiang L, Risby TH. Association between cigarette smoking and lipid peroxidation in a controlled feeding study.  Circulation. 1997;  96 1097-1101
  • 22 Letteron P, Duchatelle V, Berson A, Risby TH, Fisch C, Degott C. Increased ethane exhalation, an in vivo index of lipid peroxidation, in alcohol-abusers.  Gut. 1993;  34 409-414
  • 23 Habib MP, Dickerson F, Mooradian AD. Ethane production rate in vivo is reduced with dietary restriction.  J. Appl. Physiol.. 1990;  68 2588-2590
  • 24 Stone BG, Besse TJ, Duane WC, Evans CD, DeMaster EG. Effect of regulating cholesterol biosynthesis on breath isoprene excretion in men.  Lipids. 1993;  28 705-708
  • 25 Foster MW, Jiang L, Stetkiewicz PT, Risby TH. Breath isoprene: Temporal changes in respiratory output after exposure to ozone.  J. Appl. Physiol.. 1996;  80 706-710
  • 26 Schubert JK, Müller WPE, Benzing A, Geiger K. Gas chromatographic analysis of expired air in mechanically ventilated patients.  Intensive Care Med.. 1998;  24 415-421
  • 27 Phillips M, Saba M, Greenberg J. Increased pentane and carbon disulfide in the breath of patients with schizophrenia.  Clin. Pathol.. 1994;  46 861-864
  • 28 Phillips M, Erickson GA, Sabas M, Smith JP, Greenberg J. Volatile organic compounds in the breath of patients with schizophrenia.  Clin. Pathol.. 1995;  48 466-469
  • 29 Olopade CO, Christon JA, Zakkar M, Hua C, Swedler I, Scheff PA, Rubinstein I. Exhaled pentane and nitric oxide levels in patients with obstructive sleep apnea.  Chest. 1997;  111 1500-1504
  • 30 Allen Jr CM. Isoprene-containing metabolites of Aspergillus amstelodami.  Can. J. Microbiol.. 1972;  18 1275-1282
  • 31 Gelmont D, Stein RA, Mead JF. The bacterial origin of rat breath pentane.  Biochem. Biophys. Res. Commun.. 1981;  102/3 932-936
  • 32 Kuzma J, Nemecek-Marshal M, Pollock WH, Fall R. Bacteria produce the volatile hydrocarbon isoprene.  Current. Microbiol.. 1995;  30 97-103
  • 33 Springfield JR, Levitt MD. Pitfalls in the use of breath pentane measurements to assess lipid peroxidation.  J. Lipid Res.. 1994;  35 1497-1504
  • 34 Euler DE, Dave SJ, Guo HS. Effect of cigarette smoking on pentane excretion in alveolar breath.  Clin. Chem.. 1996;  42 303-308
  • 35 Kohlmüller D, Kochen W. Is n-pentane really an index of lipid peroxidation in humans and animals? A methological reevaluation.  Anal. Biochem.. 1993;  210 268-276
  • 36 Cailleux A, Allain P. Is pentane a normal constituent of human breath?.  Free Radic. Res. Commun.. 1993;  18 323-327
  • 37 Shanthi M, Sobotka PA, Euler DE. Pentane and isoprene in expired air from humans: gas-chromatographic analysis of single breath.  Clin. Chem.. 1994;  40 1485-1488
  • 38 Phillips M, Greenberg J. Method for the collection and analysis of volatile compounds in the breath.  J. Chromatogr.. 1991;  564 242-249
  • 39 Trinh VD, Cong-Khanh H. Graphitized carbon black in quartz tubes for the sampling of indoor air nicotine and analysis by microwave thermal desorption-capillary gas chromatography.  J. Chromat. Sci.. 1991;  29 179-183
  • 40 Jones AW, Lagesson V, Tagesson C. Determination of isoprene in human breath by thermal desorption gas chromatography with ultraviolet detection.  J. Chromatogr. B.. 1995;  672 1-6
  • 41 Grote C, Pawliszyn J. Solid-phase micro extraction for the analysis of human breath.  Anal. Chemistry. 1997;  69 587-596
  • 42 Rektorik J. Thermal desorption of solid traps by means of microwave energy. In: Sandra P (ed) Sample Introduction in Capillary Gas Chromatography, Heidelberg:. Alfred Huethig 1985: 217-233
  • 43 Müller W, Schubert J, Benzing A, Geiger K. Method for analysis of exhaled air by microwave energy desorption coupled with gas chromatography - flame ionization detection - mass spectrometry.  J. Chromatogr. B.. 1998;  716 27-38
  • 44 Wang P, Tan Y, Xie H, Shen F. A novel method for diabetes diagnosis based on electronic nose.  Biosens. Bioelectr.. 1997;  12 1031-1036
  • 45 Schubert J, Esteban-Loos I, Geiger K, Guttmann J. In-vivo evaluation of a new method for chemical analysis of volatile components in the respiratory gas of mechanically ventilated patients. Tech. Health Care; in press
  • 46 De Boever EH, De Uzeda M, Loesche WJ. Relationship between volatile sulfur compounds, BANA-hydrolyzing bacteria and gingival health in patients with and without complaints of oral malodor.  J. Clin. Dent.. 1994;  4 114-119
  • 47 Cailleux A, Cogny M, Allain P. Blood isoprene concentrations in humans and some animal species.  Biochem. Med. Metabol. Biol.. 1992;  47 157-160
  • 48 Braun G, Bernhard H, Schubert J, Müller W, Geiger K, Güttler J-P, Guttmann J. Technik zur automatischen CO2-gesteuerten Entnahme von Atemgasproben bei mechanischer Beatmung.  Biomed. Tech.. 1996;  41 Suppl. 1 584-585

Jochen K. Schubert

Anästhesiologische Universitätsklinik

Hugstetter Str. 55

D-79106 Freiburg

Email: schubert@ana1.ukl.uni-freiburg.de

    >