Anästhesiol Intensivmed Notfallmed Schmerzther 2000; 35(2): 67-81
DOI: 10.1055/s-2000-10848
ÜBERSICHT
Georg Thieme Verlag Stuttgart ·New York

Grundsätze der Katecholamintherapie

Teil 1: Charakterisierung der therapeutisch bedeutsamen SympathomimetikaCharacterisation of Clinically Relevant Sympathomimetics.W. Schütz, T. Anhäupl, A. Gauss
  • Universitätsklinik für Anästhesiologie der Universität Ulm
  • (Ärztlicher Direktor: Prof. Dr. M. Georgieff)
Further Information

Publication History

Publication Date:
31 December 2000 (online)

Zusammenfassung.

Das sympathische Nervensystem kontrolliert zusammen mit dem Parasympathikus alle vegetativ innervierten Strukturen und Organe des Körpers. Noradrenalin, Adrenalin und Dopamin werden als körpereigene Katecholamine im sympathischen Nervensystem gebildet und entfalten ihre spezifischen Wirkungen über Adrenozeptoren, Dopamin zusätzlich über dopaminerge Rezeptoren. Die „klassische” Gruppierung der Adrenozeptoren bestand aus α1-, α2-, β1- und β2-Subtypen, die in den letzten Jahren durch Gentypisierung weiter differenziert wurden. Adrenozeptoren, in die Zellmembran eingelagerte Proteine, binden auf der Zellaußenseite den Agonisten und setzen auf der Zellinnenseite über eine Interaktion mit G-Proteinen die Erregung in einen intrazellulären Effekt um. Auf Grund seiner hohen Potenz an den kardialen β-Adrenozeptoren führt Adrenalin zu einem ausgeprägten Anstieg der Herzfrequenz und des Herzzeitvolumens und bei einer Dosierung > 0,1 µg/kg·min über die Stimulierung der α-Adrenozeptoren zu einem deutlichen Anstieg des peripheren Widerstandes. Das Wirkprofil von Noradrenalin zeichnet sich durch einen vorherrschenden Effekt auf α-Adrenozeptoren aus, wodurch die Herzfrequenz trotz gleichzeitiger Stimulierung der kardialen β1-Adrenozeptoren weniger ansteigt als unter Adrenalin. Dopamin hingegen ist an den β- und α-Adrenozeptoren ein niedrig potentes Katecholamin, bewirkt aber durch einen spezifischen Effekt an dopaminergen Rezeptoren zusätzlich eine Vasodilatation in der Niere und im Splanchnikusgebiet. Dobutamin, ein relativ spezifischer Aktivator der β-Adrenozeptoren, führt im Gegensatz zu Dopamin zur Abnahme des pulmonalen Gefäßwiderstandes. Dopexamin wirkt bevorzugt an β2-Adrenozeptoren und in geringerem Maße an dopaminergen Rezeptoren, woraus insgesamt eine Vasodilatation resultiert. Orciprenalin stimuliert praktisch ausschließlich β-Adrenozeptoren und führt zu einem Anstieg der Herzfrequenz und des Herzzeitvolumens kombiniert mit einem Abfall des systemischen Gefäßwiderstandes. Phosphodiesterase-III-Hemmer erhöhen unabhängig von Adrenozeptoren den intrazellulären cAMP Spiegel durch Blockade der abbauenden Enzyme und wirken positiv inotrop und vasodilatierend.

All involuntary innervated structures of the body are controlled by the sympathetic and parasympathetic nervous system. Adrenaline, noradrenaline and dopamine are endogenous catecholamines binding to adrenergic and dopaminergic receptors, respectively, to mediate their clinical effects. Adrenoceptors are classified as α1, α2, β1 and β2 subtypes which were even further subcharacterized the recent years. Adrenoceptors are membrane proteins interacting with the agonist and, thus, inducing G-protein mediated intracellular effects. Adrenaline induces an extensive increase of heart rate and stroke volume mediated by β-adrenoceptors and significantly enhances peripheral vascular resistance by α-adrenoceptor stimulation, when administered beyond 0.1  µg/kg·min. In contrast, the clinical effects of noradrenaline are predominantly characterized by α-adrenoceptor stimulation resulting in a less pronounced increase of heart rate. Dopamine, less potent on adrenoceptors, shows additional effects on renal as well as on splanchnic circulation mediated by dopaminergic receptors. Dobutamine, primarily acting on β-adrenoceptors, results in positive inotropic effects without an increase in vascular resistance. Dopexamine, a synthetic catecholamine, induces vasodilation via β2-adrenoceptor stimulation and potentially increases splanchnic blood flow by additional effects on dopaminergic receptors. Isoproterenol, the classical β-adrenoceptor agonist, mediates positive inotropic effects and causes a major increase in heart rate and a significant decrease of systemic vascular resistance. Independent on adrenoceptors, phosphodiesterase-III-inhibitors exert positiv inotropic and vasodilating activity by an increase in intracellular cAMP concentration induced by inhibition of cAMP hydrolysis.

Literatur

  • 1 Lewandowsky M. Über eine Wirkung des Nebennierenextraktes auf das Auge.  Zent. Bl. Physiol.. 1898;  12 599-600
  • 2 Oliver G, Schafer E A. The physiological effects of extracts of the suprarenal capsules.  J. Physiol.. 1895;  18 230-276
  • 3 Baumann E. Intrakardiale Adrenalininjektion bei akuter Herzlähmung.  Schweiz. Med. Wochenschr.. 1923;  53 198-200
  • 4 Ahlquist R P. A study of the adrenotropic receptors.  Am. J. Physiol.. 1948;  153 586-600
  • 5 Lands A M, Arnold A, McAuliff J P, Luduena F P, Brown T G. Differentiation of receptor systems activated by sympathomimetic amines.  Nature. 1967;  214 597-598
  • 6 Smiley R M, Kwatra M M, Schwinn D A. New developments in cardiovascular adrenergic receptor pharmacology: Molecular mechanisms and clinical relevance.  J. Cardiothorac. Vasc. Anesth.. 1998;  12 80-95
  • 7 Starke K. Pharmakologie noradrenerger und adrenerger Systeme. In: Forth W, Henschler D, Rummel W, Starke K (Hrsg.) Allgemeine und spezielle Pharmakologie und Toxikologie. 7. Aufl. Spektrum Heidelberg; 1996: 161-200
  • 8 Lefkowitz R J, Hoffman B B, Taylor P. Neurotransmission. In: Hardman JG, Goodman Gilman A, Limbird LE (Hrsg.) Goodman & Gilman's The Pharmacological Basis of Therapeutics. 9. Aufl. McGraw-Hill New York; 1995: 105-140
  • 9 Insel P A. Adrenergic receptors - evolving concepts and implications.  N. Engl. J. Med.. 1996;  334 580-585
  • 10 Terzic A, Pucéat M, Vassort G, Vogel S M. Cardiac α1-Adrenoceptors: an overview.  Pharmacol. Rev.. 1993;  45 147-175
  • 11 Brodde O-E. Stellenwert der myokardialen Adrenozeptoren und ihre Bedeutung für die Therapie. In: Pasch T, Schmid ER (Hrsg.) Anästhesie und kardiovaskuläres System (Klinische Anästhesiologie und Intensivtherapie). Bd. 41 Springer Berlin; 1991: 72-80
  • 12 Lönnqvist F, Krief S, Strosberg A D, Nyberg S, Emorine L J, Arner P. Evidence for a functional β3-adrenoceptor in man.  Br. J. Pharmacol.. 1993;  110 929-936
  • 13 Lee M R. Dopamine and the kidney: ten years on.  Clin. Sci.. 1993;  84 357-375
  • 14 Olsen N V, Lund J, Jensen P F, Espersen K, Kanstrup I L, Plum I, Leyssac P P. Dopamine, dobutamine, and dopexamine: A comparison of renal effects in unanesthetized human volunteers.  Anesthesiology. 1993;  79 685-694
  • 15 Orme M L'E, Breckenridge A, Dollery C T. The effects of long term administration of dopamine on renal function in hypertensive patients.  Eur. J. Clin. Pharmacol.. 1973;  6 l50-155
  • 16 Melmon K L. The endocrinologic function of selected autacoids: Catecholamines, acetylcholine, serotonin, and histamine. In: Williams RH (Hrsg.) Textbook of Endocrinology. 6. Aufl. W.B. Saunders Philadelphia; 1981: 515-588
  • 17 Lefkowitz R J, Coteccia S, Samama P, Costa T. Constitutive activity of receptors coupled to guanin nucleotide regulatory proteins.  Trends Pharmacol. Sci.. 1993;  14 303-307
  • 18 Samama P, Pei G, Costa T, Coteccia S, Lefkowitz R J. Negative antagonists promote an inactive conformation of the β2-adrenergic receptor.  Mol. Pharmacol.. 1994;  45 390-394
  • 19 Schwinn D A. Adrenoceptors as models for G protein-coupled receptors: structure, function and regulation.  Br. J. Anaesth.. 1993;  71 77-85
  • 20 Gilman A G. G proteins and dual control of adenylate cyclase.  Cell. 1984;  35 577-579
  • 21 Gierschik P, Grandt R, Marquetant R, Jakobs K H. Role of G-proteins in signal transduction.  J. Cardiovasc. Pharmacol.. 1987;  10 (Suppl. 4) 6-10
  • 22 Gilman A G. G proteins: transducers of receptor-generated signals.  Annu. Rev. Biochem.. 1987;  56 615-649
  • 23 Neer E J, Clapham D E. Roles of G protein subunites in transmembrane signaling.  Nature. 1988;  333 129-134
  • 24 Freissmuth M, Casey P J, Gilman A G. G proteins control diverse pathways of transmembrane signaling.  FASEB J.. 1989;  3 2125-2130
  • 25 Sutherland E W, Robinson G A, Butcher R W. Some aspects of the biological role of adenosine 3,5-monophosphate (cycl.-AMP).  Circulation. 1968;  37 279-306
  • 26 Hers H G, Schaftingen E. Fructose 2,6-bisphosphate two years after its discovery.  Biochem. J.. 1980;  206 1-12
  • 27 Reuter H. Calcium channel modulation by neurotransmitters, enzymes and drugs.  Nature. 1983;  301 569-574
  • 28 Hausdorff W P, Caron M G, Lefkowitz R J. Turning off the signal: Desensitization of β-adrenergic receptor function.  FASEB J.. 1990;  4 2881-2889
  • 29 Lohse M J, Benovic J L, Codina J, Caron M G, Lefkowitz R J. β-Arrestin: A protein that regulates β-adrenergic receptor function.  Science. 1990;  248 1547-1550
  • 30 Bristow M R, Hershberger R A, Port J D, Gilbert E M, Sandoval A, Rasmussen R, Cates A E, Feldman A M. β-adrenergic pathways in nonfailing and failing human ventricular myocardium.  Circulation. 1990;  82 (Suppl. I) 12-25
  • 31 Collins S, Caron M G, Lefkowitz R J. Regulation of adrenergic receptor responsiveness through modulation of receptor gene expression.  Annu. Rev. Physiol.. 1991;  53 497-508
  • 32 Aarons R D, Molinoff P B. Changes in the density of beta adrenergic receptors in rat lymphocytes, heart and lung after chronic treatment with propranolol.  J. Pharmacol. Exp. Ther.. 1982;  221 439-443
  • 33 Brodde O-E. Prinzipien der rationalen Katecholamintherapie. In: Radke J (Hrsg.) Refresher Course. Aktuelles Wissen für Anästhesisten. Springer Berlin; 1995: 89-102
  • 34 Cohn J N. Drug therapy: The management of chronic heart failure.  N. Engl. J. Med.. 1996;  335 490-498
  • 35 Bristow M R, Gilbert E M. Improvement in cardiac myocyte function by biological effects of medical therapy: a new concept in the treatment of heart failure.  Eur. Heart J.. 1995;  16 (suppl. F) 20-31
  • 36 Collins S, Caron M G, Lefkowitz R J. β-adrenergic receptors in hamster smooth muscle cells are transcriptionally regulated by glucocorticoids.  J. Biol. Chem.. 1988;  263 9067-9070
  • 37 Collins S, Bouvier M, Bolanowski M A, Caron M G, Lefkowitz R J. Cyclic AMP stimulates transcription of the β2-adrenergic receptor gene in response to short term agonist exposure.  Proc. Natl. Acad. Sci.. 1989;  86 4853-4857
  • 38 Saito T, Takanashi M, Gallagher E, Fuse A, Suzaki S, Inagaki O, Yamada K, Ogawa R. Corticosteroid effect on early beta-adrenergic down-regulation during circulatory shock: hemodynamic study and beta-adrenergic receptor assay.  Intensive Care Med.. 1995;  21 204-210
  • 39 Anhäupl T, Liebl B, Trunk E, Träger K, Ensinger H, Georgieff M. Evidence for inverse regulation of high and low affinity binding sites for (-)125Iodocyanopindolol in human mononuclear leucocytes during epinephrine infusion.  J. Recept. Res.. 1993;  13 355-367
  • 40 Kaufmann T M, Horton J W. Characterization of cardiac β-adrenergic receptors in the guinea pig heart: application to study of β-adrenergic receptors in shock models.  J. Surg. Res.. 1993;  55 516-523
  • 41 Booth J V, Landolfo K P, Chesnut L C, Bennett-Guerrero E, Gerhardt M A, Atwell M D, El-Moalem H E, Smith M S, Funk B L, Kuhn C M, Kwatra M M, Schwinn D A. Acute depression of myocardial β-adrenergic receptor signaling during cardiopulmonary bypass - impairment of the adenylyl cyclase moiety.  Anesthesiology. 1998;  89 602-611
  • 42 Schwinn D A, Leone B J, Spahn D R, Chesnut L C, Page S O, McRae R L, Liggett S B. Desensitization of myocardial β-adrenergic receptors during cardiopulmonary bypass. Evidence for early uncoupling and late downregulation.  Circulation. 1991;  84 2559-2567
  • 43 Werdan K. Towards a more causal treatment of septic cardiomyopathy. In: Vincent J-L (Hrsg.) Yearbook of Intensive Care and Emergency Medicine. Springer Berlin; 1995: 517-538
  • 44 Romano F D, Jones S B. Alterations in β-adrenergic stimulation of myocardial adenylate cyclase in endotoxic rats.  Am. J. Physiol.. 1986;  250 R358-R364
  • 45 Singh M, Nottermann D A, Metakis L. Tumor necrosis factor produces homologous desensitization of lymphocyte β2-adrenergic responses.  Circ. Shock. 1993;  39 275-278
  • 46 Lemoine H, Teng K J, Slee S J, Kaumann A J. On minimum cyclic AMP formation rates associated with positive inotropic effects mediated through β1-adrenoceptors in kitten myocardium.  Naunyn-Schmiedeberg's Arch. Pharmacol.. 1989;  339 113-128
  • 47 Brown L, Deighton N M, Bals S, Söhlmann W, Zerkowski H-R, Michel M C, Brodde O-E. Spare receptors for β-adrenoceptor-mediated positive inotropic effects of catecholamines in the human heart.  J. Cardiovasc. Pharmacol.. 1992;  19 222-232
  • 48 Kaumann A J, Lemoine H, Schwederski-Menke U, Ehle B. Relations between β-adrenoceptor occupancy and increases of contractile force and adenylate cyclase activity induced by catecholamines in human ventricular myocardium.  Naunyn-Schmiedeberg's Arch. Pharmacol.. 1989;  339 99-112
  • 49 Prielipp R C, MacGregor D A, Royster R L, Kon N D, Hines M H, Butterworth J F. Dobutamine antagonizes epinephrine's biochemical and cardiotonic effects.  Anesthesiology. 1998;  89 49-57
  • 50 Dale H H. On some physiologic actions of ergot.  J. Physiol.. 1906;  35 163-206
  • 51 Steen P A, Tinker J H, Pluth J R, Barnhorst D A, Tarhan S. Efficacy of dopamine, dobutamine, and epinephrine during emergence from cardiopulmonary bypass in man.  Circulation. 1978;  57 378-384
  • 52 Giraud G D, MacCannell K L. Decreased nutrient blood flow during dopamine- and epinephrine-induced intestinal vasodilatation.  J. Pharmacol. Exp. Ther.. 1984;  230 214-220
  • 53 Meier-Hellmann A, Reinhart K, Bredle D L, Specht M, Spies C D, Hannemann L. Epinephrine impairs splanchnic perfusion in septic shock.  Crit. Care Med.. 1997;  25 399-404
  • 54 Levy B, Bollaert P-E, Charpentier C, Nace L, Audibert G, Bauer P, Nabet P, Larcan A. Comparison of norepinephrine and dobutamine to epinephrine for hemodynamics, lactate metabolism, and gastric tonometric variables in septic shock: a prospective, randomized study.  Intensive Care Med.. 1997;  23 282-287
  • 55 Robertson C, Steen P, Adgey J, Bossaert L, Carli P, Chamberlain D, Dick W, Ekstrom L, Hapnes S A, Holmberg S, Juchems R, Kette F, Koster R, Latorre F J, Lindner K, Perales N. The 1998 European Resuscitation Council guidelines for adult advanced life support.  Resuscitation. 1998;  37 81-90
  • 56 Nadkarni V, Hazinski M F, Zideman D, Kattwinkel J, Quan L, Bingham R, Zaritsky A, Bland J, Kramer E, Tiballs J. Paediatric life support. An advisory statement by the paediatric life support working group of the international liaison committee on resuscitation.  Resuscitation. 1997;  34 115-127
  • 57 MacGregor D A, Prielipp R C, Butterworth J F, James R L, Royster R L. Relative efficacy and potency of ß-adrenoceptor agonists for generating cAMP in human lymphocytes.  Chest. 1996;  109 194-200
  • 58 Redl-Wenzl E M, Armbruster C, Edelmann G, Fischl E, Kolacny M, Wechsler-Fördös A, Sporn P. The effects of norepinephrine on hemodynamics and renal fanction in severe septic shock states.  Intensive Care Med.. 1993;  19 151-154
  • 59 Meadows D, Edwards J D, Wilkins R G, Nightingale P. Reversal of intractable septic shock with norepinephrine therapy.  Crit. Care Med.. 1988;  16 663-666
  • 60 Martin C, Perrin G, Saux P, Papazian L, Gouin F. Effects of norepinephrine on right ventricular function in septic shock patients.  Intensive Care Med.. 1994;  20 444-447
  • 61 Zhang H, Smail N, Cabral A, Rogiers P, Vincent J-L. Effects of norepinephrine on regional blood flow and oxygen extraction capabilities during endotoxic shock.  Am. J. Respir. Crit. Care Med.. 1997;  155 1965-1971
  • 62 Marik P E, Mohedin M. The contrasting effects of dopamine and norepinephrine on systemic and splanchnic oxygen utilization in hyperdynamic sepsis.  J. Am. Med. Ass.. 1994;  272 1354-1357
  • 63 Meier-Hellmann A, Reinhart K. Effects of catecholamines on regional perfusion and oxygenation in critically ill patients.  Acta Anaesthesiol. Scand.. 1995;  39 (Suppl. 107) 239-248
  • 64 Hoffman B B, Lefkowitz R J. Catecholamines, sympathomimetic drugs, and adrenergic receptor antagonists. In: Hardman JG, Goodman Gilman A, Limbird LE (Hrsg.) Goodman & Gilman's The Pharmacological Basis of Therapeutics. 9. Aufl. McGraw-Hill New York; 1995: 199-248
  • 65 Schaer G L, Fink M P, Parrillo J E. Norepinephrine alone versus norepinephrine plus low-dose dopamine: enhanced renal blood flow with combination pressor therapy.  Crit. Care Med.. 1985;  13 492-496
  • 66 Richer M, Robert S, Lebel M. Renal hemodynamics during norepinephrine and low-dose dopamine infusions in man.  Crit. Care Med.. 1996;  24 1150-1156
  • 67 Juste R N, Panikkar K, Soni N. The effects of low-dose dopamine infusion on haemodynamic and renal parameters in patients with septic shock requiring treatment with noradrenaline.  Intensive Care Med. 1998;  24 564-568
  • 68 Prewitt R M. Hemodynamic management in pulmonary embolism and acute hypoxemic respiratory failure.  Crit. Care Med.. 1990;  18 61-69
  • 69 Neidhart P, Fuchs T. Anästhesiologische und therapeutische Besonderheiten bei Rechtsherzinsuffizienz. In: Pasch T, Schmid ER (Hrsg.) Anästhesie und kardiovaskuläres System (Klinische Anästhesiologie und Intensivtherapie, Bd. 41). Springer Berlin; 1991: 93-100
  • 70 Tarnow J. Anaesthesie und Kardiologie in der Herzchirurgie. Springer Berlin; 1983
  • 71 Laver M B. Myocardial ischaemia. Dilemma between information available and information demand.  Br. Heart J.. 1983;  50 223-230
  • 72 Hess W, Klein W, Mueller-Busch C, Tarnow J. Haemodynamic effects of dopamine and dopamine combined with nitroglycerin in patients subjected to coronary bypass surgery.  Br. J. Anaesth.. 1979;  51 1063-1069
  • 73 Gabel J C. Dopamine: do the risks outweigh the benefits?. In: Lawin P, Peter K, Prien T (Hrsg.) Intensivmedizin 1995: Praxis der Intensivbehandlung (Schriftenreihe Intensivmedizin, Notfallmedizin, Anästhesiologie; Bd. 85). Thieme Stuttgart; 1995: 78-90
  • 74 Duke G J, Bersten A D. Dopamine and renal salvage in the critically ill patient.  Anaesth. Intens. Care. 1992;  20 277-302
  • 75 Hilberman M, Maseda J, Stinson E B, Derby G C, Spencer R J, Miller D C, Oyer P E, Myers B D. The diuretic properties of dopamine in patients after open-heart operation.  Anesthesiology. 1984;  61 489-494
  • 76 Vendegna T R, Anderson R J. Are dopamine and/or dobutamine renoprotective in intensive care unit patients?.  Crit. Care Med.. 1994;  22 1893-1894
  • 77 Duke G J, Briedis J H, Weaver R A. Renal support in critically ill patients: low-dose dopamine or low-dose dobutamine?.  Crit. Care Med.. 1994;  22 1919-1925
  • 78 Lherm T, Troche G, Rossignol M, Bordes P, Zazzo J F. Renal effects of low-dose dopamine in patients with sepsis syndrome or septic shock treated with catecholamines.  Intensive Care Med.. 1996;  22 213-219
  • 79 Swygert T H, Roberts L C, Valek T R, Brajtbord D, Brown M R, Gunning T C, Paulsen A W, Ramsay M A. Effect of intraoperative low-dose dopamine on renal function in liver transplant recipients.  Anesthesioloy. 1991;  75 571-576
  • 80 Baldwin L, Henderson A, Hickman P. Effect of postoperative low-dose dopamine on renal function after elective major vascular surgery.  Ann. Intern. Med.. 1994;  120 744-747
  • 81 Myles P S, Buckland M R, Schenk N J, Cannon G B, Langley M, Davis B B, Weeks A M. Effect of “renal dose” dopamine on renal function following cardiac surgery.  Anaesth. Intens. Care. 1993;  21 56-61
  • 82 Thompson B T, Cockrill B A. Renal-dose dopamine: a siren song?.  Lancet. 1994;  344 7-8
  • 83 Szerlip H M. Renal-dose dopamine: fact and fiction.  Ann. Intern. Med.. 1991;  115 153-154
  • 84 Vincent J-L. Renal effects of dopamine: can our dream ever come true?.  Crit. Care. Med.. 1994;  22 5-6
  • 85 Kindgen-Milles D, Tarnow J. Niedrig dosiertes Dopamin verbessert die Nierenfunktion: Derzeitiger Kenntnisstand und Bewertung einer kontroversen Diskussion.  Anästh. Intensivmed. Notfallmed. Schmerzther.. 1997;  32 333-342
  • 86 Berghe G, Zegher F, Lauwers P. Dopamine suppresses pituitary function in infants and children.  Crit. Care Med.. 1994;  22 1747-1753
  • 87 Berghe G, Zegher F. Anterior pituitary function during critical illness and dopamine treatment.  Crit. Care Med.. 1996;  24 1580-1590
  • 88 Devins S S, Miller A, Herndon B L, O'Toole L, Reisz G. Effects of dopamine on T-lymphozyte proliferative responses and serum prolactin concentrations in critically ill patients.  Crit. Care Med.. 1992;  20 1644-1649
  • 89 Munn J, Tooley M, Bolsin S, Hronek I, Lowson S, Willcox J. Effect of metoclopramide on renal vascular resistance index and renal function in patients receiving a low-dose infusion of dopamine.  Br. J. Anaesth.. 1993;  71 379-382
  • 90 Niemer M. Herz und Kreislauf. In: Niemer M, Nemes C, Lundsgaard-Hansen P, Blauhut B (Hrsg.) Datenbuch Intensivmedizin. 3. Aufl. Gustav Fischer Stuttgart; 1992: 365-727
  • 91 Meier-Hellmann A, Bredle D L, Specht M, Spies C, Hannemann L, Reinhart K. The effects of low-dose dopamine on splanchnic blood flow and oxygen uptake in patients with septic shock.  Intensive Care Med.. 1997;  23 31-37
  • 92 Williams J F, Bristow M R, Fowler M B, Francis G S, Garson A, Gersh B J, Hammer D F, Hlatky M A, Leier C V, Packer M, Pitt B, Ullyot D J, Wexler L F, Winters W L. Guidelines for the evaluation and management of heart failure.  Circulation. 1995;  92 2764-2784
  • 93 Nevière R, Mathieu D, Chagnon J-L, Lebleu N, Wattel F. The contrasting effects of dobutamine and dopamine on gastric mucosal perfusion in septic patients.  Am. J. Respir. Crit. Care Med.. 1996;  154 1684-1688
  • 94 Levy B, Bollaert P-E, Lucchelli J-P, Sadoune L-O, Nace L, Larcan A. Dobutamine improves the adequacy of gastric mucosal perfusion in epinephrine-treated septic shock.  Crit. Care Med.. 1997;  25 1649-1654
  • 95 Reinhart K, Meier-Hellmann A, Hannemann L. Regional versus global indicators of tissue oxygenation. In: Vincent J-L (Hrsg.) Yearbook of Intensive Care and Emergency Medicine. Springer Berlin; 1994: 191-199
  • 96 Ruokonen E, Uusaro A, Alhava E, Takala J. The effect of dobutamine infusion on splanchnic blood flow and oxygen transport in patients with acute pancreatitis.  Intensive Care Med.. 1997;  23 732-727
  • 97 Parviainen I, Ruokonen E, Takala J. Dobutamine-induced dissociation between changes in splanchnic blood flow and gastric intramucosal pH after cardiac surgery.  Br. J. Anaesth.. 1995;  74 277-282
  • 98 Smith G W, O'Connor S E. An introduction to the pharmacologic properties of Dopacard (dopexamine hydrochloride).  Am. J. Cardiol.. 1988;  62 9-17C
  • 99 Brodde O-E. The functional importance of beta1 and beta2 adrenoceptors in the human heart.  Am. J. Cardiol.. 1988;  62 24-29C
  • 100 Ririe D G, MacGregor D A, Butterworth J. Cardiotonic agents: what's new and useful.  Seminars in Anesthesia. 1994;  13 42-49
  • 101 Honkonen E L, Kaukinen L, Kaukinen S, Pehkonen E J, Laippala P. Dopexamine unloads the impaired right ventricle better than iloprost, a prostacyclin analog, after coronary artery surgery.  J. Cardiothorac. Vasc. Anesth.. 1998;  12 647-653
  • 102 Schmidt H, Secchi A, Wellmann R, Bach A, Böhrer H, Martin E. Dopexamine maintains intestinal villus blood flow during endotoxemia in rats.  Crit. Care Med.. 1996;  24 1233-1237
  • 103 Cain S M, Curtis S E. Systemic and regional oxygen uptake and delivery and lactate flux in endotoxic dogs infused with dopexamine.  Crit. Care Med.. 1991;  19 1552-1559
  • 104 Tighe D, Moss R, Heywood G, Al-Saady N, Webb A, Bennett D. Goal-directed therapy with dopexamine, dobutamine, and volume expansion: effects of systemic oxygen transport on hepatic ultrastructure in porcine sepsis.  Crit. Care Med.. 1995;  23 1997-2007
  • 105 Lund N, Asla R J, Cladis F, Papadakos P J, Thorborg P AJ. Dopexamine hydrochloride in septic shock: effects on oxygen delivery and oxygenation of gut, liver, and muscle.  J. Trauma. 1995;  38 767-775
  • 106 Smithies M, Yee T H, Jackson L, Beale R, Bihari D. Protecting the gut and the liver in the critically ill: effects of dopexamine.  Crit. Care Med.. 1994;  22 789-795
  • 107 Maynard N D, Bihari D J, Dalton R N, Smithies M N, Mason R C. Increasing splanchnic blood flow in the critically ill.  Chest. 1995;  108 1648-1654
  • 108 Boyd O, Grounds R M, Bennett E D. A randomized clinical trial of the effect of deliberate perioperative increase of oxygen delivery on mortality in high-risk surgical patients.  J. Am. Med. Ass.. 1993;  270 2699-2707
  • 109 Hannemann L, Reinhart K, Meier-Hellmann A, Wallenfang G, Bredle D L. Dopexamine hydrochloride in septic shock.  Chest. 1996;  109 756-760
  • 110 Uusaro A, Ruokonen E, Takala J. Gastric mucosal pH does not reflect changes in splanchnic blood flow after cardiac surgery.  Br. J. Anaesth.. 1995;  74 149-154
  • 111 Hines R. New cardiotonic agents. In: Barash PG (Hrsg.) ASA refresher courses in anesthesiology. 22. Aufl. Lippincott Philadelphia; 1994: 153-168
  • 112 Geisser W, Träger K, Hähn A, Georgieff M, Ensinger H. Metabolic and calorigenic effects of dopexamine in healthy volunteers.  Crit. Care Med.. 1997;  25 1332-1337
  • 113 Fitton A, Benfield P. Dopexamine Hydrochloride. A review of its pharmacodynamic and pharmacokinetic properties and therapeutic potential in acute cardiac insufficiency.  Drugs. 1990;  39 308-330
  • 114 Colucci W S, Wright R F, Braunwald E. New positive inotropic agents in the treatment of congestive heart failure. Mechanisms of action and recent clinical developments (second of two parts).  N. Engl. J. Med.. 1986;  314 349-358
  • 115 Thormann J, Kramer W, Kindler M, Kremer P, Schlepper M. Bestimmung der Wirkkomponenten von Amrinon durch kontinuierliche Analyse der Druck-Volumenbeziehungen; Anwendung der Conductance-(Volumen)-Kathetertechnik und der schnellen Laständerung durch Ballonokklusion der Vena cava inferior.  Z. Kardiol.. 1987;  76 530-540
  • 116 Scholz H, Dieterich H A, Schmitz W. Zum Mechanismus der positiven Wirkung von Phosphodiesterase-Hemmstoffen.  Z. Kardiol.. 1991;  80 (Suppl. 4) 6
  • 117 Packer M, Carver J R, Rodeheffer R J, Ivanhoe R J, DiBianco R, Zeldis S M, Hendrix G H, Bommer W J, Elkayam U, Kukin M L, Mallis G I, Sollano J A, Shannon J, Tandon P K, DeMets D L. Effect of oral milrinone on mortality in severe chronic heart failure.  N. Engl. J. Med.. 1991;  325 1468-1475
  • 118 DiBianco R. Acute positive inotropic intervention: The phosphodiesterase inhibitors.  Am. Heart J.. 1991;  121 1871-1875
  • 119 Das P A, Skoyles J R, Sherry K M, Peacock J E, Fox P A, Woolfrey S G. Disposition of milrinone in patients after cardiac surgery.  Br. J. Anaesth.. 1994;  72 426-429
  • 120 Konstam M A, Cody R J. Short-term use of intravenous milrinone for heart failure.  Am. J. Cardiol.. 1995;  75 822-826
  • 121 Anderson J L, Baim D S, Fein S A, Goldstein R A, LeJemtel T H, Likoff M J. Efficacy and safety of sustained (48 hour) intravenous infusions of milrinone in patients with severe congestive heart failure: a multicenter study.  J. Am. Coll. Cardiol.. 1987;  9 711-722

Dr. med. W. Schütz

Universitätsklinik für Anästhesiologie

Steinhövelstr. 9

D-89075 Ulm

Email: wolfram.schuetz@medizin.uni-ulm.de