Fortschr Neurol Psychiatr 2000; 68(8): 352-356
DOI: 10.1055/s-2000-11803
ÜBERSICHT
Georg Thieme Verlag Stuttgart · New York

Das EEG als Indikator des cholinergen Defizits bei der Alzheimerschen Krankheit

G. Adler
  • Altentagesklinik am Zentralinstitut für Seelische Gesundheit, Mannheim (Direktor: Prof. Dr. Dr. F. A. Henn)
Weitere Informationen

Publikationsverlauf

Publikationsdatum:
31. Dezember 2000 (online)

Zusammenfassung:

Das EEG ist eng mit der Aktivität des cholinergen Systems verbunden. Die aszendierenden cholinergen Projektionen des Nucleus basalis Meynert erhöhen die Erregbarkeit kortikaler Neurone. Andererseits führt eine cholinerge Deafferenzierung des Kortex zu einer Zunahme langsamer EEG-Aktivität. Bei der Alzheimerschen Krankheit besteht typischerweise ein cholinerges Defizit. Dem entsprechen charakteristische EEG-Veränderungen, insbesondere eine Zunahme der Aktivität in den langsamen Frequenzbändern. Das Ausmaß der EEG-Veränderungen nimmt mit dem Fortschreiten der Erkrankung zu. Es korreliert mit der klinischen Schwere des Krankheitsbildes, dem neuropsychologischen Leistungsvermögen, der zerebralen Durchblutung, der Sauerstoff-Utilisation und dem Ausmaß der histopathologischen Veränderungen. EEG-Veränderungen stellen bei der Alzheimerschen Krankheit ein wertvolles diagnostisches Hilfsmittel dar. Möglicherweise sind sie auch zur Frühdiagnostik geeignet und ermöglichen eine Prädiktion der Wirksamkeit cholinerger Medikamente.

The EEG as Indicator of the Cholinergic Deficit in Alzheimer's Disease:

There are tight relationships between the EEG and the activity of the cholinergic system. The excitability of cortical neurons is increased by the ascending cholinergic projections of the nucleus basalis of Meynert. Cholinergic deafferentiation of the cortex leads to an increase of slow-wave EEG activity. Cholinergic deficit is a typical feature of Alzheimer's disease. It is goes along with characteristic EEG alterations, mainly increased activity in the slow frequency bands. The amount of EEG alterations increases as the disease progresses. It is correlated with the severity of symptoms, neuropsychological performance, cerebral perfusion, cerebral glucose utilization and the extent of histopathological changes. EEG alterations are a valuable diagnostic tool in Alzheimer's disease. They may be suited for early diagnosis and may allow the prediction of the therapeutic response to cholinergic drugs.

Literatur

  • 1 Moruzzi G, Magoun H W. Brainstem reticular formation and activation of the EEG.  Electroenceph clin Neurophysiol. 1949;  1 455-473
  • 2 Shute C CD, Lewis P R. The ascending cholinergic reticular systems: neocortical, olfactory and subcortical projektions.  Brain. 1967;  90 497-520
  • 3 Herz A. Über die Wirkung von Scopolamin und ähnlichen Substanzen auf bedingte Reaktionen.  Arch Exp Pathol Pharmakol. 1959;  236 110-112
  • 4 Longo V G. Effects of scopolamine and atropine on electroencephalographic and behavioral reactions due to hypothalamic stimulation.  J Pharmacol. 1966;  116 198-208
  • 5 Spehlmann R. Acetylcholine facilitation, atropine block of synaptic excitation of cortical neurons.  Science. 1969;  165 404-405
  • 6 Mesulam M-M, Van Hoesen G W. Acetylcholinesterase rich projections from the basal forebrain of the rhesus monkey to neocortex.  Brain Res. 1976;  109 152-157
  • 7 Levey A I, Hallanger A E, Wainer B H. Cholinergic nucleus basalis neurons may influence the cortex via the thalamus.  Neurosci Lett. 1987;  74 7-13
  • 8 Armstrong D M, Saper C B, Levey A J. Distribution of cholinergic neurons in rat brain: demonstrated by the immunohistochemical localization of choline acetyltransferase.  J Comp Neurol. 1983;  216 53-68
  • 9 Steriade M, Deschenes M. The thalamus as a neural oscillator.  Brain Res. 1984;  8 1-63
  • 10 Mesulam M-M, Voliver R, Marquis J K, Mufson E J, Green R C. Systemic regional differences in the cholinergic innervation of the primate cerebral cortex: distribution of enzyme activity and some behavioral implications.  Ann Neurol. 1986;  19 144-151
  • 11 Mesulam M-M, Mufson E J, Wainer B H, Levey A L. Central cholinergic pathways in the rat: an overview based on an alternative nomenclature (Ch1 - Ch6).  Neuroscience. 1983;  4 1185-1201
  • 12 Zaborsky L. Afferent connections of the fore brain. Cholinergic projection neurons, with special reference to monoaminergic and peptidergic fibers. In: Frotscher M, Misgelt U (Hrsg.). Central Cholinergic Synaptic Transmission Basel: Birkhauer 1990
  • 13 McCormick D A. Cholinergic and noradrenergic modulation of thalamocortical processing.  Trends Neurosci. 1989;  12 215-221
  • 14 Steriade M, Domich L, Oakson G. Reticularis thalami revisited. activity changes during shifts in states of vigilance.  J Neurosci. 1986;  6 68-81
  • 15 Buzsaki G, Bickford R G, Ponomareff G, Thal L J, Mandel R, Gage F H. Nucleus basalis and thalamic control of neocortical activity in freely moving rat.  J Neurosci. 1988b;  8 4007-4026
  • 16 Lamour Y, Dutar P, Jobert A. Excitatory effect of acetylcholine on different types of neurons in the first somatosensory neocortex of the rat: laminar distribution and pharmacological characteristics.  Neuroscience. 1982;  6 1483-1494
  • 17 Madison D V, Lancaster B, Nicoll R A. Voltage clamp analysis of cholinergic action in the hippocampus.  J Neurosci. 1987;  7 733-741
  • 18 Detari L, Vanderwolf C H. Activity of identified cortically projecting and other basal forebrain neurons during large slow waves and cortical activation in anaesthetized rats.  Brain res. 1987;  437 1-10
  • 19 Buzsaki G, Bickford R G, Armstrong D M, Ponomareff G, Chen K S, Ruiz R, Thal L, Gage F H. Electric activity in the neocortex of freely moving young and aged rats.  Neurosci. 1988a;  26 735-744
  • 20 Riekkinen Jr J, Sirviö J, Riekkinen P. Relationships between EEG delta power and the cortical choline acetyltransferase content.  Neurosci Res. 1990a;  8 12-20
  • 21 Riekkinen Jr P, Sirviö J, Valjakka A, Pitkänen A, Partanen J, Riekkinen P. The effects of concurrent manipulations of cholinergic and noradrenergic systems on neocortical EEG and spatial learning.  Behav Neural Biol. 1990b;  54 204-210
  • 22 Riekkinen Jr P, Sirviö J, Jäkälä P, Lammintausta R, Riekkinen P. Interaction between the alpha2-noradrenergic and muscarinergic systems in the regulation of neocortical high voltage spindles.  Brain Res Bull. 1990c;  25 147-149
  • 23 Riekkinen Jr P, Sirviö J, Riekkinen P. The effects of THA on medial septal lesion-induced memory defects.  Pharmacol Biochem Behav. 1990d;  36 237-241
  • 24 Casamenti F, Deffenu G, Abbamondi A, Pepeu G. Changes in cortical acetylcholine output induced by modulation of the nucleus basalis.  Brain Res Bull. 1986;  16 689-695
  • 25 Metherate R, Ashe J H. Basal forebrain stimulation modifies auditory cortex responsiveness by an action at muscarinic receptos.  Brain Res. 1991;  559 163-167
  • 26 Metherate R, Cox C L, Ashe J H. Cellular bases of neocortical activation: modulation of neural oscillations by the nucleus basalis and endogenous acetylcholine.  J Neurosci. 1992;  12 4701-4711
  • 27 Davies P, Maloney J F. Selective loss of central cholinergic neurons in Alzheimer's disease.  Lancet. 1976;  ii 403
  • 28 Bartus R T, Dean R L, Beer B, Lippa A S. The cholinergic hypothesis of geriatric memory dysfunction.  Science. 1982;  17 408-417
  • 29 McGeer P L, McGeer E G, Suzuki J, Dolman C E, Nagai T. Aging, Alzheimer's disease, and the cholinergic system of the basal forebrain.  Neurology. 1984;  34 741-745
  • 30 Reinikainen K J, Riekkinen P J, Paljärvi L, Soininen H, Helkala E L, Jolkkonen J, Laakso M. Cholinergic deficit in Alzheimer's disease: a study based on CSF and autopsy data.  Neurochem Res. 1988;  13 135-146
  • 31 Bird T D, Stranahan S, Sumi S M, Raskind M. Alzheimer's disease: choline acetyltransferase activity in brain tissues from clinical and pathological subgroups.  Ann Neurol. 1983;  14 284-293
  • 32 Perry E K. The cholinergic hypothesis - ten years on.  Br Med Bull. 1986;  42 63-69
  • 33 Drachman S. Central cholinergic system and memory. In: Lipton MA, Killian AF (Hrsg.). Psychopharmacology: a generation of progress New York: Raven Press 1978: 651-652
  • 34 Furey M L, Pietrini P, Schapiro M B. Functional brain studies of cholinergic modulation of memory in humans. In: Vellas B, Fitten LJ (Hrsg). Research and practice in Alzheimer's disease, Vol. 2 New York: Springer Publishing Company 1999: 110-115
  • 35 Hartikainen P, Soinen H, Partanen J, Helkala E L, Riekkinen P. Aging and spectral analysis of EEG in normal subjects: a link to memory and CSF AChE.  Acta Neurol Scand. 1992;  86 148-155
  • 36 Arendt T, Bigl V, Walther F, Sonntag M. Decreased ratio of CSF acetylcholinesterase to butylcholinesterase activity in Alzheimer's disease.  Lancet. 1984;  ii 173
  • 37 Soininen H, Reinikainen K J, Partanen J, Heikala E-L, Paljärvi L, Riekkinen P J. Slowing of electronencephalogram and choline acetyltransferase activity in post mortem frontal cortex in definite Alzheimer's disease.  Neuroscience. 1992;  49 529-535
  • 38 Sannita W G, Maggi L, Rosadini G. Effects of scopolamine (0,25 - 0,75 mg i. m.) on the quantitative EEG and the neuropsychological status of healthy volunteers.  Neuropsychobiology. 1987;  17 199-205
  • 39 Sloan E P, Fenton G W, Standage K P. Anticholinergic drug effects on quantitative electroencephalogram, visual evoked potential and verbal memory.  Biol Psychiatry. 1992;  31 600-606
  • 40 Kikuchi M, Wada Y, Nanbu Y, Nakajima A, Tachibana H, Takeda T, Hashimoto T. EEG changes following scopolamine administration in healthy subjects.  Neuropsychobiology. 1999;  39 219-226
  • 41 Neufeld M Y, Rabey M J, Parmet Y, Sifris P, Treves T A, Korczyn A D. Effects of a single intravenous dose of scopolamine on the quantitative EEG in Alzheimer's disease patients and age-matched controls.  Electroencephalogr clin Neurophysiol. 1994;  91 407-412
  • 42 Gustafson L, Edvinsson L, Dahlgren N, Hagberg B, Risberg J, Rosén I, Fernö H. Intravenous physostigmine treatment of Alzheimer's disease evaluated by psychometric testing, regional cerebral blood flow (rCBF) measurement, and EEG.  Psychopharmacology. 1987;  93 31-35
  • 43 Berger H. Über das Elektrenkephalogramm des Menschen. Dritte Mitteilung.  Arch Psychiatr Nervenkr. 1931;  94 16-60
  • 44 Berger H. Über das Elektrenkephalogramm des Menschen. Fünfte Mitteilung.  Arch Psychiatr Nervenkr. 1932;  98 231-254
  • 45 Coben L A, Danzinger W L, Berg L. Frequency analysis of the resting awake EEG in mild senile dementia of Alzheimer type.  Electropencephalogr Clin Neurophysiol. 1983;  55 372-380
  • 46 Duffy F H, Albert M S, McAnulty G. Brain electrical activity in patients with presenile and senile dementia of the Alzheimer type.  Ann Neurol. 1984;  16 439-448
  • 47 Penttila M, Partanen V J, Soininen H, Riekkinen P J. Quantitative analysis of occipital EEG in different stages of Alzheimer's disease.  Electroencephalogr Clin Neurophysiol. 1985;  60 1-6
  • 48 Brenner R P, Ulrich R F, Spiker D G, Scabassi R J, Reynolds C F, Marin R S, Boller F. Computerized EEG spectral analysis in elderly normal, demented and depressed subjects.  Electroencephalogr Clin Neurophysiol. 1986;  64 483-492
  • 49 Breslau J, Starr A, Sicotte N, Buchsbaum M S. Topographic EEG changes with normal aging and SDAT.  Electroencephalogr Clin Neurophysiol. 1989;  72 281-289
  • 50 Giannitrapani D, Collins J, Vassiliadis D. The EEG spectra of Alzheimer's disease.  Int J Psychophysiol. 1991;  10 259-269
  • 51 Szelies B, Grond M, Herholz K, Kessler J, Heiss W D. Quantitative EEG mapping and PET in Alzheimer's disease.  J Neurol Sci. 1992;  110 46-56
  • 52 Jelic V, Shigeta M, Julin P, Almkvist O, Winblad B, Wahlund L-O. Quantitative electroencephalography power and coherence in Alzheimer's disease and mild cognitive impairment.  Dementia. 1996;  7 314-323
  • 53 d'Onofrio F, Salvia S, Petretta V, Bonavita V, Rodriguez G, Tedeschi G. Quantified-EEG in normal aging and dementia.  Acta Neurol Scand. 1996;  93 336-345
  • 54 Förstl H, Besthorn C, Sattel H, Zerfass R, Geiger-Kabisch C, Schreiter-Gasser U, Hentschel F. Volumetrische Hirnveränderungen und quantitatives EEG bei normalem Altern und Alzheimer-Demenz.  Nervenarzt. 1996;  67 53-61
  • 55 Chiaramonti R, Muscas G C, Paganini M, Müller T J, Fallgatter A J, Versari A, Strik W K. Correlations of topographical EEG feature with clinical severity in mild and moderate dementia of Alzheimer type.  Neuropsychobiology. 1997;  36 153-158
  • 56 Dustman R E, LaMarche J A, Cohn N B, Shearer D E, Talone J M. Power spectral analysis and cortical coupling of EEG for young and old normal adults.  Neurobiol Aging. 1985;  6 193-198
  • 57 Ihl R, Dierks T, Martin E, Frölich L, Maurer K. Die Bedeutung des EEG bei der Früh- und Differentialdiagnose der Demenz vom Alzheimer Typ.  Fortschr Neurol Psychiat. 1992;  60 451-459
  • 58 Anderer P, Saletu B, Kloppel B, Semlitsch H V, Werner H. Discrimination between demented patients and normals based on topographic EEG slow wave activity: comparison between statistics, discriminant analysis and artificial neural network classifiers.  Electroencephahlogr Clin Neurophysiol. 1994;  91 108-117
  • 59 Rodriguez G, Nobili F, Rocca G, DeCarli F, Gianelli M V, Rosadini G. Quantitative electroencephalography and regional cerebral blood flow: discriminant analysis between Alzheimer's patients and healthy controls.  Dementia Geriatr Cogn Disord. 1998;  9 274-283
  • 60 Ihl R, Brinkmeyer J, Jänner M, Kerdar M S. A comparison of ADAS and EEG in the discrimination of patients with dementia of the Alzheimer type from healthy controls.  Neuropsychobiology. 2000;  41 102-107
  • 61 Coben L A, Danzinger W, Storandt M. A longitudinal EEG study of mild senile dementia of Alzheimer type: changes at 1 year and at 2,5 years.  Electroencephalogr Clin Neurophysiol. 1985;  61 101-112
  • 62 Dierks T, Perisic I, Frölich L, Ihl R, Maurer K. Topography of the quantitative electroencephalogram in dementia of the Alzheimer type: relation to severity of dementia.  Psychiatr Res. 1991;  40 181-194
  • 63 Buchan R J, Nagata K, Yokoyama E, Langman P, Yuya H, Hirata Y, Hatazawa J, Kanno I. Regional correlations between the EEG and oxygen metabolism in dementia of Alzheimer's type.  Electroencephalogr Clin Neurophysiol. 1997;  103 409-417
  • 64 Müller T J, Thome J, Chiaramonti R, Dierks T, Maurer K, Fallgatter A J, Frölich L, Scheubeck M, Strik W K. A comparison of qEEG and HMPAO-SPECT in relation to the clinical severity of Alzheimer's disease.  Eur Arch Psychiatry Clin Neurosci. 1997;  247 259-263
  • 65 Soininen H, Partanen J, Laulumaa V, Pääkkönen A, Helkala E-L, Riekkinen P J. Serial EEG in Alzheimer's disease: 3 year follow-up and clinical outcome.  Electroencephalogr Clin Neurophysiol. 1991;  79 342-348
  • 66 Helkala E L, Laulumaa V, Soininen H. Different patterns of cognitive decline related to normal or deteriorating EEG in a 3-year follow-up study of patients with Alzheimer's disease.  Neurology. 1991;  41 528-532
  • 67 Lopez O L, Brenner R P, Becker J T, Ulrich R F, Boller F, DeKosky S T. EEG spectral abnormalities and psychosis as predictors of cognitive and functional decline in probable Alzheimer's disease.  Neurology. 1997;  48 1521-1522
  • 68 Clauss J J, Kwa V I, Teunisse S, Walstra G J, van Gool W A, Koelman J H, Bour L J, Ongerboer-de Visser B W. Slowing on quantitative spectral EEG is a marker for rate of subsequent cognitive and functional decline in early Alzheimer disease.  Alzheimer Dis Assoc Disord. 1998;  12 167-174
  • 69 Adler G, Bramesfeld A, Jajcevic A. Mild cognitive impairment in old-age depression is associated with increased EEG slow-wave power.  Neuropsychobiology. 1999;  40 218-222
  • 70 Alhainen K, Riekkinen J Sr. Discrimination of Alzheimer patients responding to cholinesterase inhibitor therapy.  Acta Neurol Scand. 1993;  Suppl 149 16-21
  • 71 Minthon L, Gustafson L, Dalfelt G, Hagberg B, Nilsson K, Risberg J, Rosen I, Seiring B, Wendt P E. Oral tetrahydro-aminoacridine treatment of Alzheimer's disease evaluated clinically and by regional cerebral blood flow and EEG.  Dementia. 1993;  4 32-42
  • 72 Adler G, Brassen S, Piendl A, Jajcevic A. Short-term effects of rivastigmine treatment in Alzheimer patients. In: Brunello N (Hrsg). Neurocognitive impairment in schizophrenic and Alzheimer's disorders: therapeutic approaches Paris: International Academy for Biomedical and Drug Research 1999: 119-120

Priv.-Doz. Dr. G. Adler

Altentagesklinik
Zentralinstitut für Seelische Gesundheit

J5
68159 Mannheim

eMail: E-mail: adler@as200.zi-mannheim.de

    >