Int J Sports Med 2000; 21(7): 463-468
DOI: 10.1055/s-2000-7412
Physiology and Biochemistry
Georg Thieme Verlag Stuttgart · New York

Lactate Concentration in Plasma and Red Blood CellsDuring Incremental Exercise

A. Hildebrand1 , W. Lormes1 , J. Emmert2 , Y. Liu1 , M. Lehmann1 , J. M. Steinacker1
  • 1 Abt. Sport- und Rehabilitationsmedizin, Universitätsklinikum Ulm, Ulm, Germany
  • 2 Roche Diagnostics (Boehringer Mannheim Corporation), Mannheim, Germany
Further Information

Publication History

Publication Date:
31 December 2000 (online)

The purpose of this study was to investigate the distribution of lactate in plasma and red blood cells (RBC) in capillary blood during and after incremental exercise. We measured capillary plasma lactate and whole blood lactate of 10 subjects during incremental treadmill running and the first 20 min of recovery. To minimize lactate exchange from plasma to RBC between sampling and analysis, a recently developed rapid plasma separation method was used. RBC lactate was calculated. The RBC/plasma lactate concentration ratio decreased from 1.0 (0.85 - 1.28) before to 0.37 (0.25 - 0.45) after exhaustive exercise (plasma lactate 15.9 (12.2 - 19.5) mmol × l-1, RBC lactate 4.8 (4.0 - 7.0) mmol × l-1), thus showing that capillary plasma lactate increased much more rapidly than intracellular lactate during incremental exercise. In the first 5 minutes of recovery intracellular lactate still rose while plasma lactate already declined. Then both decreased while the concentration ratio as well as the absolute concentration gradient remained nearly constant (ratio 20 min after exercise termination: 0.43 (0.19 - 0.54).

References

  • 01 Ahlberg J, Nilson E, Walsh J. The theory of splines and their applications. New York; Academic Press 1967
  • 02 Brooks G A. The lactate shuttle during exercise and recovery.  Med Sci Sports Exerc. 1986;  18 360-368
  • 03 Brooks G A. Current concepts in lactate exchange.  Med Sci Sports Exerc. 1991;  23 895-906
  • 04 Buono M J, Yeager J E. Intraerythrocyte and plasma lactate concentrations during exercise in humans.  Eur J Appl Physiol. 1986;  55 326-329
  • 05 Daniel S S, Morishima H O, James L S, Adamsons Jr K. Lactate and pyruvate gradients between red blood cells and plasma during acute asphyxia.  J Appl Physiol. 1964;  19 1100-1104
  • 06 Decker D G, Rosenbaum J D. The distribution of lactic acid in human blood.  Am J Physiol. 1942;  138 7-11
  • 07 Deuticke B, Beyer E, Forst B. Discrimination of three parallel pathways of lactate transport in the human erythrocyte membrane by inhibitors and kinetic properties.  Biochim Biophys Acta. 1982;  684 96-110
  • 08 Devadatta S C. Distribution of lactate between the corpuscles and the plasma in blood.  Quart J Exp Physiol. 1934;  24 295-303
  • 09 Dietze A, Donath R, Rockstroh K. Vergleichende Untersuchungen der Laktatkonzentrationen in Blutproben aus verschiedenen Entnahmestellen.  Med Sport. 1974;  14 370-379
  • 10 Dubinsky W E, Racker E. The mechanism of lactate transport in human erythrocytes.  J Membrane Biol. 1978;  44 25-36
  • 11 Foxdal P, Sjödin B, Sjödin A, Östman B. The validity and accuracy of blood lactate measurements for prediction of maximal endurance running capacity. Dependency of analyzed blood media in combination with different designs of the exercise test.  Int J Sports Med. 1994;  15 89-95
  • 12 Foxdal P, Sjödin B, Rudstam H, Östmann C, Östmann B, Hedenstierna G C. Lactate concentration differences in plasma, whole blood, capillary finger blood and erythrocytes during submaximal graded exercise in humans.  Eur J Appl Physiol. 1990;  61 218-222
  • 13 Gladden L B, Smith E W, Skelton M S. Lactate distribution in blood during passive and active recovery after intense exercise.  Med Sci Sports Exerc. 1994;  26 S35
  • 14 Halestrap A P. Transport of pyruvate and lactate into human erythrocytes.  Biochem J. 1976;  156 193-207
  • 15 Harris R T, Dudley G A. Exercise alters the distribution of ammonia and lactate in blood.  J Appl Physiol. 1989;  66 313-317
  • 16 Huckabee W E. Control of concentration gradients of pyruvate and lactate across cell membranes in blood.  J Appl Physiol. 1956;  9 163-170
  • 17 Johnson R E, Edwards H T, Dill B D, Wilson J W. Blood as a physiological system XIII. The distribution of lactate.  J Biol Chem. 1945;  157 461-473
  • 18 Juel C, Bangsbo J, Graham T, Saltin B. Lactate and potassium fluxes from human skeletal muscle during and after intense, dynamic, knee extensor exercise.  Acta Physiol Scand. 1990;  140 147-159
  • 19 Lindinger M I, McKelvie R S, Heigenhauser G JF. K+ and Lac- distribution in humans during and after high-intensity exercise: role in muscle fatigue attenuation.  J Appl Physiol. 1995;  78 765-777
  • 20 Lormes W, Steinacker J M, Stauch M. Lactate concentrations in different blood compartments after 6- min maximal exercise in well trained rowers. In: Steinacker JM, Ward SA (eds) The Physiology and Pathophysiology of Exercise Tolerance. New York; Plenum Press 1996: 261-265
  • 21 Mader A, Heck H. A theory of the metabolic origin of “anaerobic threshold”.  Int J Sports Med. 1986;  7 S45-S65
  • 22 McKelvie R S, Lindinger M I, Heigenhauser G JF, Jones N L. Contribution of erythrocytes to the control of the electrolyte changes of exercise.  Can J Physiol Pharmacol. 1990;  69 984-993
  • 23 Poole R C, Cranmer S L, Holdup D W, Halestrap A P. Inhibition of L-lactate transport and band 3-mediated anion transport in erythrocytes by the novel stilbenedisulphonate N,N,N′,N′-tetrabenzyl-4,4′-diaminostilbene-2,2′-disulphonate (TBenzDS).  Biochim Biophys Acta. 1991;  1070 69-76
  • 24 Poole R C, Halestrap A P. Transport of lactate and other monocarboxylates across mammalian plasma membranes.  Am J Physiol. 1993;  264 C761-C782
  • 25 Senay L C Jr, Rogers G, Jooste P. Changes in blood plasma during progressive treadmill and cycle exercise.  J Appl Physiol. 1980;  49 59-65
  • 26 Severinghaus J W. Exercise O2 transport model assuming zero cytochrome PO2 at V˙O2max.  J Appl Physiol. 1994;  77 671-678
  • 27 Skelton M S, Kremer D E, Smith E W, Gladden L B. Lactate influx into red blood cells of athletic and nonathletic species.  Am J Physiol. 1995;  268 R1121-R1128
  • 28 Skelton M S, Kremer D E, Smith E W, Gladden L B. Lactate influx into red blood cells from trained and untrained human subjects.  Med Sci Sports Exerc. 1998;  30 536-542
  • 29 Smith E W, Skelton M S, Kremer D E, Pascoe D D, Gladden L B. Lactate distribution in the blood during progressive exercise.  Med Sci Sports Exerc. 1997;  29 654-660
  • 30 Smith E W, Skelton M S, Kremer D E, Pascoe D D, Gladden L B. Lactate distribution in the blood during steady-state exercise.  Med Sci Sports Exerc. 1998;  30 1424-1429
  • 31 Smith J A, Telford R D, Kolbuch-Braddon M, Weidemann M J. Lactate/H+ uptake by red blood cells during exercise alters their physical properties.  Eur J Appl Physiol. 1997;  75 54-61
  • 32 Yoshida T, Suda Y, Takeuchi N. Endurance training regimen based upon arterial blood lactate: Effects on anaerobic threshold.  Eur J Appl Physiol. 1982;  49 223-230

Dr. W. Lormes

Abt. Sport- und Rehabilitationsmedizin Universitätsklinikum Ulm

89070 Ulm Germany

Phone: Phone:+ 49 (731) 5026975

Fax: Fax:+ 49 (731) 5026686

Email: E-mail:werner.lormes@medizin.uni-ulm.de

    >