Zusammenfassung:
Hintergrund: Über die Pharmakokinetik und lokale Bioverfügbarkeit von Zytostatika und anderen
Chemotherapeutika in menschlichen Tumoren ist nur wenig bekannt. Studien hierzu sind
aus ethischen Gründen nur sehr schwierig durchzuführen. Methode: Das hier beschriebene Modell des isoliert perfundierten und ventilierten humanen
Lungenpräparates (IHLP) ist ein Basismodell für pharmakologische Untersuchungen an
tumortragenden Lungenpräparaten, die aus therapeutischen Gründen vom Thoraxchirurgen
reseziert werden. Postoperativ wird das Operationspräparat ex vivo unter physiologischen
Bedingungen reperfundiert und ventiliert. Ergebnisse: In einer ersten Untersuchungsphase wurde sichergestellt, dass die Reperfusion die
morphologische Diagnose und das Staging nicht beeinträchtigt. Weitere Untersuchungen
galten der Pharmakokinetik von Cyclophosphamid, Adriamycin sowie HMR 1826, einer Adriamycin-Prodrug.
Die Endkonzentration von Cyclophosphamid und Adriamycin nach Perfusion lag im Tumor
um eine Größenordnung unter der im normalen Lungengewebe. Im Gegensatz dazu konnten
mit HMR 1826 durch tumorselektive Aktivierung vergleichbare Konzentrationen an Adriamycin
im Tumor und im normalen Lungengewebe erreicht werden. Schlussfolgerung: Im medizinischen Modellsystem hat sich das IHLP als idealer Zwischenschritt zwischen
der Zellkultur und der In-vivo-Situation bei der Untersuchung humaner Tumoren ausgezeichnet.
Weitere Einsatzmöglichkeiten des Modells und dessen Grenzen werden zukünftig zu definieren
sein.
Pharmacokinetics of Cyclophosphamid, Adriamycin and Adramycin-Prodrug (HMR 1826) using
the Ex-vivo Isolated Perfused Human Lungmodel (IHLP):
Background: Today knowledge about pharmacokinetics of anticancer drugs in human malignant tumors
is poor. Data from in vivo studies are limited and difficult to obtain due to ethical
aspects. An ex vivo isolated perfused and ventilated human lung model however allows
pharmacological studies of human bronchial carcinoma inside their host organ, the
lung, under physiological conditions without compromising the patient. Methods: Following surgery for bronchial carcinoma human lung preparations were reperfused
and ventilated extracorporally for 2 - 3 hours. During the reperfusion anticancer
drugs are added to the perfusion solution and their uptake into tumor, normal lung
tissue, and lymph nodes is studied. Results: An initial study showed that lung reperfusion under physiological circumstances over
a period of 2 - 3 hours did not interfere with histo-pathological diagnostics and
staging; an important precondition for potential adjuvant treatment. Pharmacokinetics
of cyclophosphamid, adriamycin, and a water soluble adriamycin prodrug (HMR 1826)
were measured. Final tissue concentrations of adriamycin and cyclophosphamid in peripheral
lung parenchyma turned out to be 10 times higher compared to tumor tissue. However,
following perfusion with adriamycin prodrug final tissue concentrations of adriamycin
were in the same range in lung and tumor. Conclusions: The ex-vivo isolated human lung perfusion model (IHLP) has proven to be an ideal
scientific model for pharmacological investigations of human tumors as an intermediate
step between cell culture and in-vivo situation without any disadvantage for the patient.
The tumor-to-host interaction is completely saved in this model. However, first pass
reactions of drugs in other organs must not play a role for the substances studied
with the IHLP. The role and future applications of the isolated perfused human lung
model for other indications is discussed.
Key words:
Isolated lung perfusion - Lung cancer - Anticancer drugs
Literatur
1
Johnston M R, Minchin R, Shull J H, Thenot J P, McManus B M, Terrill R, Boyd M R.
Isolated lung perfusion with adriamycin: a preclinical study.
Cancer.
1983;
52
404-409
2
Kanekal S, Plopper C, Morin D, Buckpitt A.
Metabolic activation and bronchiolar Clara cell necrosis from naphtalene in the isolated
perfused mouse lung.
J Pharmacol Exp Ther.
1990;
252
428-437
3
Kröll F, Karlsson J A, Nilsson E, Persson C GA, Ryrfeldt A.
Lung mechanics of the guinea-pig isolated perfused lung.
Acta Physiol Scand.
1986;
128
1-8
4
Rickaby D A, Fehring J F, Johnston M R, Dawson C A.
Tolerance of the isolated perfused lung to hyperthermia.
J Thorac Cardiovasc Surg.
1991;
101
732-739
5
Seeger W, Walmrath D, Grimminger F, Rosseau S, Schutte H, Kramer H J, Ermert L, Kiss L.
Adult respiratory distress syndrome: model systems using isolated perfused rabbit
lungs.
Methods Enzymol.
1994;
233
549-584
6
Weksler B, Burt M.
Isolated lung perfusion with antineoplastic agents for pulmonary metastases. Chest
Surg.
Chest Surg Clin N Am.
1998;
8
157-182
7
Weksler B, Ng B, Lenert J T, Burt M E.
Isolated single-lung perfusion: a study of the optimal perfusate and other pharmacokinetic
factors.
Ann Thorac Surg.
1995;
60
624-629
8
Barabas K, Sizensky J A, Faulk W P.
Transferrin conjugates of adriamycin are cytotoxic without intercalating nuclear DNA.
J Biol Chem.
1992;
267
9437-9442
9
Trail P A, Willner D, Lasch S J, Henderson A J, Greenfield R S, King D, Zoeckler M E,
Braslawsky G R.
Antigen-specific activity of carcinoma-reactive BR64-doxorubicin conjugates evaluated
in vitro and in human tumor xenograft models.
Cancer Res.
1992;
52
5693-5700
10
Galun E, Shouval D, Adler R, Shahaar M, Wilchek M, Hurwitz E, Sela M.
The effect of α-Fetoprotein-adriamycin conjugate on a human hepatoma.
Hepatology.
1990;
11
578-584
11
Shih L B, Goldenberg D M, Xuan H, Lu H, Sharkey R M, Hall T C.
Anthracycline immunoconjugates prepared by a site-specific linkage via an amino-dextran
intermediate carrier.
Cancer Res.
1991;
51
4192-4198
12
Linder A, Friedel G, Fritz P, Kivisto K T, McClellan M, Toomes H.
The ex-vivo isolated, perfused human lung model: description and potential applications.
Thorac Cardiovasc Surg.
1996;
44
140-146
13
Gervot L, Rochat B, Gautier J C, Bohnenstengel F, Kroemer H, de Berardinis V, Martin H,
Beaune P, de Waziers I.
Human CYP2B6: expression, inducibility and catalytic activities.
Pharmacogenetics.
1999;
9
295-306
14
Kivisto K T, Griese E U, Fritz P, Linder A, Hakkolo J, Raunio H, Beaune P, Kroemer H K.
Expression of cytochrome P 450 3A enzymes in human lung: a combined RT-PCR and immunohistochemical
analysis of normal tissue and lung tumours.
Naunyn Schmiedebergs Arch Pharmacol.
1996;
353
207-212
15
Mürdter T E, Sperker B, Kivistö K T, McClellan M, Fritz P, Friedel G, Linder A, Bosslet K,
Toomes H, Dierkesmann R, Kroemer H K.
Enhanced uptake of doxorubicin into bronchial carcinoma: beta-glucuronidase mediates
release of doxorubicin from a glucuronide prodrug (HMR 1826) at the tumor site.
Cancer Res.
1997;
57
2440-2445
16
Bosslet K, Czech J, Hoffmann D.
Tumor-selective prodrug activation by fusion protein-mediated catalysis.
Cancer Res.
1994;
54
2151-2159
17 Bohnenstengel F, Friedel G, Ritter C A, McClellan M, Fritz P, Eichelbaum M, Linder A,
Toomes H, Dierkesmann R, Kroemer H K. Variability of cyclophosphamide uptake into
human bronchial carcinoma: consequences for local bioactivation. Cancer Chemother
Pharmacol (im Druck)
18
Bosslet K, Straub R, Blumrich M, Czech J, Gerken M, Sperker B, Kroemer H K, Gesson J P,
Koch M, Monneret C.
Elucidation of the mechanism enabling tumor selective prodrug monotherapy.
Cancer Res.
1998;
58
1195-1201
1 Herrn PD Dr. med. H.-N. Macha zum 60. Geburtstag gewidmet
Dr A Linder
Abteilung Thoraxchirurgie Lungenklinik Hemer
Theo-Funccius-Str. 1 58765 Hemer
Email: E-mail: linder@lungenklinik-hemer.de