Int J Sports Med 2000; 21(8): 561-565
DOI: 10.1055/s-2000-8485
Physiology and Biochemistry
Georg Thieme Verlag Stuttgart · New York

Loss of Myocardial CK-MB into the Circulation Following 3.5 Hours of Swimming in a Rat Model

Y. J. Chen1 , R. C. Serfass1 , F. S. Apple1, 2
  • 1 Division of Kinesiology, School of Kinesiology and Leisure Studies, University of Minnesota, USA
  • 2 Department of Laboratory Medicine and Pathology, Hennepin County Medical Center, University of Minnesota School of Medicine, Minneapolis, MN, USA
Further Information

Publication History

Publication Date:
31 December 2000 (online)

The purpose of this study was to document alterations of creatine kinase-B (CK-B) in the left and right ventricles of rats and CK-MB release into the circulation following a single bout of stressful prolonged intense exercise. Male Sprague-Dawley rats, with 8 % bodyweight attached to each tail, were forced to swim 3.5 hours and were then sacrificed immediately (0 h PS), 3 hours (3 h PS), 24 hours (24 h PS), and 48 hours (48 h PS) post swimming, respectively. Sedentary (control) rats were sacrificed at rest. Serum CK-MB mass increased 2.1 times (8.9 µg/L; p < 0.01 vs. controls of 4.3 µg/L) and 1.4 times (6.0 µg/L; P < 0.01 vs. controls) at 0 h PS, and 3 h PS, respectively, and returned to baseline at 24 h PS. Western blot analysis indicated that CK-B of the right ventricle decreased 14 % (p < 0.05), 20 % (p < 0.01), and 12 % (p < 0.05) at 3 h PS, 24 h PS and 48 h PS, respectively. The CK-B of the left ventricles decreased 34 % (p < 0.05) at 0 h PS, returned to baseline at 3 h PS, and was increased 39 % (P < 0.01) at 48 h PS. Our findings demonstrate that a single bout of stressful, prolonged, intense exercise resulted in CK-B subunit loss from the myocardium, resulting in increased serum CK-MB concentrations, an indication of myocardial injury.

References

  • 1 Adams J E III, Bodor G S, Davila-Roman V G, Delmez J A, Apple F S, Ladenson J H, Jaffe A S. Cardiac troponin I - a marker with high specificity for cardiac injury.  Circulation. 1993;  88 101-106
  • 2 Ahmed S A, Williamson J R, Roberts R, Clark R E, Sobel B E. The association of increased plasma MB CPK activity and irreversible ischemic myocardial injury in the dog.  Circulation. 1976;  54 187-193
  • 3 Apple S F, Rogers M A, Casal D C. Creatine kinase-MB isoenzyme adaptations in stressed human skeletal muscle of marathon runners.  J Appl Physiol. 1985;  59 149-153
  • 4 Apple F S, Billadello J J. Expression of creatine kinase M and B mRNAs in treadmilll trained rat skeletal muscle.  Life Sci. 1994;  55 585-592
  • 5 Chen Y J, Serfass R C, Apple F S. Alternations in the expression and activity of creatine kinase-M and mitochondrial creatine kinase subunits in skeletal muscle following prolonged intense exercise in rats.   Eur J Appl Physiol. 2000;  81 114-119
  • 6 Cummins P, Young A, Auckland M L, Michie A C, Stone P CW. Comparison of serum cardiac specific troponin-I with creatine kinase, creatine kinase-MB isoenzyme, tropomyosin, myoglobin and C-reactive protein release in marathon runners: Cardiac or skeletal muscle trauma?.  Eur J Clin Invest. 1987;  17 317-324
  • 7 Douglas P S, O'Toole M L, Woolard J. Regional wall motion abnormalities after prolonged exercise in the normal left ventricle.  Circulation. 1981;  82 2108-2114
  • 8 Douglas P S, O'Toole M L, Hiller W DB, Reichek N. Different effects of prolonged exercise on the right and left ventricles.  J Am Coll Cardiol. 1990;  15 64-69
  • 9 Erickson-Viitanen S, Geiger P J, Viitanen P, Bessman S P. Compartmentation of mitochondrial creatine phosphokinase.  J Biol Chem. 1982;  257 14405-14411
  • 10 Feng Y J, Chen C, Fallon J T, Lai T, Chen L, Knibbs D R, Waters D D, Wu A HB. Comparison of cardiac troponin I, creatine kinase-MB and myoglobin for detection of acute ischemic myocardial injury in a swine model.  Am J Clin Pathol. 1998;  110 70-77
  • 11 Heyndrickx G R, Amano J, Kenna T, Fallon J T, Patrick T A, Manders W T, Rogers G G, Rosendorff C, Vatner S F. Creatine kinase release not associated with myocardial necrosis after short periods of coronary artery occlusion in conscious baboons.  J Am Coll Cardiol. 1985;  6 1299-1303
  • 12 Hoang C D, Zhang J, Payne R M, Apple S F. Post-infarction left ventricular remodeling induces changes in creatine kinase mRNA and protein subunit levels in porcine myocardium.  Am J Pathol. 1997;  151 257-264
  • 13 Ishikawa Y, Saffitz J E, Mealman T L, Grace A M, Roberts R. Reversible myocardial ischemic injury is not associated with increased creatine kinase activity in plasma.  Clin Chem. 1997;  43 467-475
  • 14 Knowlton A A, Brecher P, Ngoy S, Apstein C S. Brief cardiac ischemia induces expression of heart shock protein 70.  Circulation. 1989;  80 237
  • 15 Lowry O H, Rosebrough N J, Farr A L, Randall R J. Protein measurement with the folin phenol reagent.  J Biol Chem. 1951;  193 265-275
  • 16 McArdle W D. Metabolic stress of endurance swimming in the laboratory rat.  J Appl Physiol. 1967;  22 50-54
  • 17 Mehta H B, Popavich B K, Dillman W H. Comparison of creatine kinase M and B subunit mRNAs and isoenzyme activity in ischemic dog myocardium.  J Mol Cell Cardiol. 1987;  19 522
  • 18 Miles M P, Schneider C M. Creatine kinase isoenzyme MB may be elevated in healthy young women after submaximal eccentric exercise.  J Lab Clin Med. 1993;  122 197-201
  • 19 Miller T D, Rogers P J, Bauer B A, O'Brien J F, Squires R W, Bailey K R, Bore A A. Does exercise training alter myocardial creatine kinase MB isoenzyme content.  Med Sci Sports Exerc. 1989;  21 437-440
  • 20 Neubauer S, Horn M, Naumann A, Tian R, Hu K, Laser M, Friedrich J, Gaudron P, Schnackerz K, Ingwall J S. Impairment of energy metabolism in intact residual myocardium of rat hearts with chronic myocardial infarction.  J Clin Invest. 1995;  95 1092-1100
  • 21 Neubauer S, Frank M, Hu K, Remkes J, Laser A, Horn M, Ertl G, Lohse M J. Changes of creatine kinase gene expression in rat heart post-myocardial infarction.  J Mol Cell Cardiol. 1998;  30 803-810
  • 22 Niemelä K, Palatsi I, Ikäheima M, Airaksined J, Takkunen J. Impaired left ventricular diastolic function in athletes after utterly strenuous prolonged exercise.  Int J Sports Med. 1987;  8 61-65
  • 23 Oliver L R, DeWaal A, Retief F J, Marx J D, Potgieter G M. Electrocardiographic and biochemical studies on marathon runners.  S Afr Med J. 1978;  53 783-787
  • 24 Osbakken M, Locko R. Scintigraphic determination of ventricular function and coronary perfusion in long-distance runners.  Am Heart J. 1984;  108 296-304
  • 25 Perault H, Turcotte R. Exercise-induced cardiac hypertrophy: fact or fallacy.  Sports Med. 1994;  17 288-308
  • 26 Richey P A, Brown S P. Pathological versus physiological left ventricular hypertrophy: a review.  J Sports Sci. 1998;  16 129-141
  • 27 Rifai N, Douglas P S, O'Toole M, Rimm E, Ginsburg G S. Cardiac troponin T and I, electrocardiographic wall motion analyses, and ejection fractions in athletes participating in the Hawaii ironman triathlon.  Am J Cardiol. 1999;  83 1085-1089
  • 28 Rogers M A, Stull G A, Apple F S. Creatine kinase isoenzyme activities in men and women following a marathon race.  Med Sci Sports Exerc. 1985;  17 679-682
  • 29 Rowe W J. A world record marathon runner with silent ischemia without coronary atherosclerosis.  Chest. 1991;  99 1306-1308
  • 30 Sakai K, Gebhard M M, Spieckermann P G, Bretschneider H J. Enzyme release resulting from total ischemia and reperfusion in the isolated, perfused guinea pig heart.  J Mol Cell Cardiol. 1975;  7 827-840
  • 31 Siegel A J, Lewandrowski K B, Strauss H W, Fischman A J, Yasuda T. Normal post-race antimyosin myocardial scintigraphy in asymptomatic marathon runners with elevated serum creatine kinase MB isoenzyme and troponin T levels. Evidence against silent myocardial cell necrosis.  Cardiology. 1995;  86 451-456
  • 32 Steinhagen-Thiessen E, Reznick A Z. Effect of short- and long-term endurance training on creatine phosphokinase activity in skeletal and cardiac muscles of CW-1 and C57BL mice.  Gerontology. 1987;  33 14-18
  • 33 Towbin H, Staehelin T, Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications.  Proc Nat Acad Sci USA. 1979;  76 4350-4354
  • 34 Voss E M, Sharkey S W, Gernert A, Murakami M A, Johnson R B, Hsieh C C, Apple F S. Human and canine cardiac troponin T and CK MB distribution in normal and diseased myocardium.  Arch Path Lab Med. 1995;  119 799-806
  • 35 Wallimann T, Wyss M, Brdiczka D, Nicolay K, Eppenberger H M. Intracellular compartmentation, structure and function of creatine kinase isoenzymes in tissues with high and fluctuating energy demands: the phosphocreatine circuit for cellular energy homeostasis.  Biochem J. 1992;  281 21-40
  • 36 Wu A HB, Valdes R, Apple F S, Gornet T, Stone M A, Mayfield-Stokes S, Ingersoll-Stroubos A M, Wiler B. Cardiac troponin-T immunoassay for diagnosis of acute myocardial infarction.  Clin Chem. 1994;  40 900-907

Ph. D. F. S. Apple

Hennepin County Medical Center Clinical Labs #812

701 Park Ave. Minneapolis, MN 55415 USA

Phone: Phone:+ 1 (612) 3473324

Fax: Fax:+ 1 (612) 9044229

Email: E-mail:fred.apple@co.hennepin.mn.us

    >