Abstract
The regio- and enantioselective reduction of two hydrophobic β,δ-diketo esters is
presented. Enzymatic reduction of racemic tert -butyl 4-methyl-3,5-dioxohexanoate (rac -1 ) with alcohol dehydrogenase from Lactobacillus brevis (recLBADH) gave δ-hydroxy-β-keto ester syn -(4S ,5R )-4 under dynamic kinetic resolution conditions (99.2% ee, syn:anti = 97:3, 66% isolated yield). The highly lipophilic tert -butyl-3,5-dioxoheptanoate (2 ) was reduced with the same sense of enantio- and regioselectivity by recLBADH. A
biphasic system was applied in this case. The product, δ-hydroxy-β-keto ester (R )-9 (98.5% ee, 66% isolated yield), was converted into (R )-6-ethyl-5,6-dihydropyran-2-one [(R )-10 ], which is a naturally occurring fragrance.
Key words
stereoselective synthesis - asymmetric catalysis - natural products - lactones - enzymatic
reduction
References and Notes
<A NAME="RC01601SS-1">1 </A>
Wolberg M.
Hummel W.
Wandrey C.
Müller M.
Angew. Chem., Int. Ed.
2000,
39:
4306
<A NAME="RC01601SS-2A">2a </A>
Blandin V.
Carpentier J.-F.
Mortreux A.
Eur. J. Org. Chem.
1999,
3421
<A NAME="RC01601SS-2B">2b </A>
Shao L.
Kawano H.
Saburi M.
Uchida Y.
Tetrahedron
1993,
49:
1997
<A NAME="RC01601SS-2C">2c </A>
Sayo N,
Saito T,
Kumobayashi H,
Akutagawa S,
Noyori R, and
Takaya H. inventors; (Takasago International Corp.), Eur. Patent Appl. EP 297,752.
<A NAME="RC01601SS-3">3 </A>
Ji A.
Wolberg M.
Hummel W.
Wandrey C.
Müller M.
Chem. Commun.
2001,
57
<A NAME="RC01601SS-4A">4a </A>
Lavallée J.-F.
Spino C.
Ruel R.
Hogan KT.
Deslongchamps P.
Can. J. Chem.
1992,
70:
1406
<A NAME="RC01601SS-4B">4b </A>
Mullah KB.
Sutherland JK.
J. Chem. Soc., Perkin Trans. 1
1992,
1237
<A NAME="RC01601SS-5">5 </A>
Nahm S.
Weinreb SM.
Tetrahedron Lett.
1981,
22:
3815
<A NAME="RC01601SS-6A">6a </A>
Bel-Rhlid R.
Renard MF.
Veschambre H.
Bull. Soc. Chim. Fr.
1996,
133:
1011
<A NAME="RC01601SS-6B">6b </A>
Stanetty P.
Krumpak B.
Rodler IK.
J. Chem. Res., Miniprint
1995,
2110
<A NAME="RC01601SS-7">7 </A>
Riebel B.
Ph. D. Thesis
University of Düsseldorf;
Düsseldorf:
1996.
<A NAME="RC01601SS-8">8 </A>
Wolberg M., Hummel W., Müller, M.; Chem.-Eur. J. , in press.
<A NAME="RC01601SS-9A">9a </A>
Noyori R.
Tokunaga M.
Kitamura M.
Bull. Chem. Soc. Jpn.
1995,
68:
36 ; and references cited therein
<A NAME="RC01601SS-9B">9b </A>
Stecher H.
Faber K.
Synthesis
1997,
1 ; and references cited therein
<A NAME="RC01601SS-10A">10a </A>
Tsuboi S.
Nishiyama E.
Furutani H.
Utaka M.
Takeda A.
J. Org. Chem.
1987,
52:
1359
<A NAME="RC01601SS-10B">10b </A>
Fujisawa T.
Mobele BI.
Shimizu M.
Tetrahedron Lett.
1992,
33:
5567
<A NAME="RC01601SS-10C">10c </A>
Zelinski T.
Liese A.
Wandrey C.
Kula M.-R.
Tetrahedron: Asymmetry
1999,
10:
1681
<A NAME="RC01601SS-10D">10d </A>
Hayakawa R.
Shimizu M.
Synlett
1999,
1298 ; (α-substituted β-keto aldehyde)
Lactone 6 is known in racemic form:
<A NAME="RC01601SS-11A">11a </A>
Adams MA.
Duggan AJ.
Smolanoff J.
Meinwald J.
J. Am. Chem. Soc.
1979,
101:
5364
<A NAME="RC01601SS-11B">11b </A>
Willson TM.
Kocienski P.
Jarowicki K.
Isaac K.
Faller A.
Campbell SF.
Bordner J.
Tetrahedron
1990,
46:
1757
<A NAME="RC01601SS-11C">11c </A> Lactone syn -(5R ,6R )-6 has been used in the synthesis of (+)-pederin:
Nakata T.
Nagao S.
Oishi R.
Tetrahedron Lett.
1985,
26:
6465
<A NAME="RC01601SS-12A">12a </A>
Akita H.
Furuichi A.
Koshiji H.
Horikoshi K.
Oishi T.
Chem. Pharm. Bull.
1983,
31:
4376
<A NAME="RC01601SS-12B">12b </A>
Fráter G.
Müller U.
Günther W.
Tetrahedron
1984,
40:
1269
<A NAME="RC01601SS-12C">12c </A>
Nakamura K.
Miyai T.
Nagar A.
Oka S.
Ohno A.
Bull. Chem. Soc. Jpn.
1989,
62:
1179
<A NAME="RC01601SS-12D">12d </A>
Shieh W.-R.
Sih CJ.
Tetrahedron: Asymmetry
1993,
4:
1259
<A NAME="RC01601SS-13">13 </A>
In a hexane-buffer biphasic system the reduction of compound 2 with recLBADH proceeded to only 20% conversion after five days (NADPH-recycling with
2-propanol).
Recent applications of XAD-7 in bioconversions:
<A NAME="RC01601SS-14A">14a </A>
Nakamura K.
Fujii M.
Ida Y.
J. Chem. Soc., Perkin Trans. 1
2000,
3205
<A NAME="RC01601SS-14B">14b </A>
D"Arrigo P.
Fantoni GP.
Servi S.
Strini A.
Tetrahedron: Asymmetry
1997,
8:
2375
<A NAME="RC01601SS-14C">14c </A>
Vicenzi JT.
Zmijewski MJ.
Reinhard MR.
Landen BE.
Muth WL.
Marler PG.
Enzyme Microb. Technol.
1997,
20:
494
<A NAME="RC01601SS-15">15 </A>
Kallimopoulos T.
Deschenaux P.-F.
Jacot-Guillarmod A.
Helv. Chim. Acta
1991,
74:
1233
<A NAME="RC01601SS-16">16 </A>
Ohloff G.
Scent and Fragrances
Springer;
Berlin:
1994.
p.182
<A NAME="RC01601SS-17">17 </A>
Carlson RM.
Oyler AR.
Peterson JR.
J. Org. Chem.
1975,
40:
1610
<A NAME="RC01601SS-18A">18a </A>
Davies-Coleman MT.
Rivett DEA.
Fortschr. Chem. Org. Naturst.
1989,
55:
1
<A NAME="RC01601SS-18B">18b </A>
Collett LA.
Davies-Coleman MT.
Rivett DEA.
Fortschr. Chem. Org. Naturst.
1998,
75:
181 ; and references cited therein
<A NAME="RC01601SS-19">19 </A> Procedure similar to:
Gilbreath SG.
Harris CM.
Harris TM.
J. Am. Chem. Soc.
1988,
110:
6172
<A NAME="RC01601SS-20">20 </A>
Hydrochloric acid was applied at 2 mol L-
1 and the washed silica gel was dried at 105 °C for 24 h.
<A NAME="RC01601SS-21">21 </A>
If necessary, alcohols were acetylated prior to GC MS-analysis: To a CH2 Cl2 solution (200 µL) of the analyte (1-5 mmol L-
1 ) were added trifluoroacetic acid anhydride (7 µL) and pyridine (5 µL). The vial was
capped and incubated at 40 °C for 10 min.
Preparation of bisenolates according to:
<A NAME="RC01601SS-22A">22a </A>
Weiler L.
J. Am. Chem. Soc.
1970,
92:
6702
<A NAME="RC01601SS-22B">22b </A> We found that an ester-based acylation procedure described by the same author
resulted in low yields:
Huckin SN.
Weiler L.
Can. J. Chem.
1974,
52:
1343 ; Weinreb amides were therefore applied as acylating reagents
<A NAME="RC01601SS-22C">22c </A>
Hanamoto T.
Hiyama T.
Tetrahedron Lett.
1988,
29:
6467
<A NAME="RC01601SS-23">23 </A>
In CDCl3 solution, this compound exists in three tautomeric forms according to 1 H NMR spectroscopy (20 °C). In DMSO-d
6 , one of the two enol forms is suppressed to approx. 5%.
<A NAME="RC01601SS-24">24 </A>
Calculation based on the relative intensity within the following three pairs of 13 C-signals: δC-2(
syn
) /δC-2(
anti
) , δC-4(
syn
) /δC-4(
anti
) and δC-5(
syn
) /δC-5(
anti
) (average value; maximum deviation ±8%). Signals of the enol forms were ignored since
it can be assumed that both diastereomers undergo enolization to a similar extent.
<A NAME="RC01601SS-25">25 </A>
Data taken from the diastereomeric mixture, reference 28.
Procedure similar to:
<A NAME="RC01601SS-26A">26a </A>
Ohta S.
Shimabayashi A.
Hayakawa S.
Sumino M.
Okamoto M.
Synthesis
1985,
45
<A NAME="RC01601SS-26B">26b </A>
Deschenaux P.-F.
Kallimopoulos T.
Stœckli-Evans H.
Jacot-Guillarmod A.
Helv. Chim. Acta
1989,
72:
731
<A NAME="RC01601SS-27">27 </A> Prepared from compound rac -9 as described in the general procedure I. Compound rac -9 , in turn, was prepared from tert -butyl acetoacetate and propionaldehyde according to:
Huckin SN.
Weiler L.
Can. J. Chem.
1974,
52:
2157
<A NAME="RC01601SS-28">28 </A>
Lactone syn/anti -rac -6 was prepared from compound syn/anti-rac-
4 according to the general procedure II. Compound syn/anti -rac -4 , in turn, was prepared from tert -butyl acetate and syn/anti -rac -8
[12 ]
c as described for the (4R ,5S )-stereo-isomer.