Pharmacopsychiatry 2001; 34(Suppl1): 89-97
DOI: 10.1055/s-2001-15449
Original Paper
© Georg Thieme Verlag Stuttgart · New York

Effects of Hypericum perforatum (St. John’s wort) on Passive Avoidance in the Rat: Evaluation of Potential Neurochemical Mechanisms Underlying its Antidepressant Activity

I. Misane1,2 , S. O. Ögren1
  • 1Division of Behavioral Neuroscience, Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
  • 2Department of Molecular Neuroendocrinology, Max Planck Institute for Experimental Medicine, Goettingen, Germany
Further Information

Publication History

Publication Date:
31 December 2001 (online)

Along with traditional pharmacotherapies, extracts of Hypericum perforatum L. (St. John’s wort) are used in the treatment of mild to moderately severe depression. Hypericum is a nonspecific inhibitor of the neuronal uptake of monoamines (serotonin, 5-HT; noradrenaline, NA; dopamine, DA) as well as GABA and glutamate. Hypericum extracts have been shown to be active in several different “animal models for antidepressant drugs”. As one of a large number of chemical constituents, the phoroglucinol derivative hyperforin might be an important “antidepressant component”” of hypericum. However, the exact role of neurochemical mechanisms underlying in vivo actions of hypericum and hyperforin are not well defined. In the present study, we compared the effects of hypericum, hyperforin and hyperforin-free hypericum and the three conventional antidepressants paroxetine, imipramine and desipramine using the passive avoidance (PA) task in the rat. The 5-HT-releasing compound p-chloroamphetamine (PCA), which operates through the 5-HT neuronal transporter, was used to reveal the potential in vivo effects on 5-HT uptake mechanisms. To examine the ability of the test-compounds to enhance noradrenaline (NA) transmission in vivo, subeffective doses of scopolamine were used. Taken together, our results suggest that (1) hypericum given at high doses can probably affect the neuronal 5-HT uptake mechanisms in a manner more reminiscent of TCAs than SSRIs; (2) similar to TCAs and SSRIs, hypericum and hyperforin are active in the scopolamine test. Hyperforin appears to play a major role in the action of hypericum in this model. Both 5-HT and NA might concomitantly contribute to the effects of different antidepressants in the “low-dose scopolamine” model; (3) hypericum might enhance both 5-HT and NA transmission in forebrain limbic brain circuits important for mood control, which could underly its antidepressant effects. However, the relative contribution of different constituents and exact mechanisms of action require further evaluation.

References

  • 1 Ambrogi Lorenzini C G, Baldi E, Bucherelli C, Sacchetti B, Tassoni G. Analysis of mnemonic processing by means of totally reversible neural inactivations.  Brain Res Brain Res Protoc. 1997;  1 391-398
  • 2 Axt K J, Molliver M E, Qian Y, Blakely R D. Subtypes of 5-HT axons differ in their expression of serotonin transporter.  Soc Neurosci Abstr. 1995;  21 865
  • 3 Banerjee S P, Kung L S, Riggi S J, Chanda S K. Development of beta-adrenergic receptor subsensitivity by antidepressants.  Nature. 1977;  268 455-456
  • 4 Barker E L, Blakely R D. Norepinephrine and serotonin transporters. Molecular targets of antidepressant drugs. In: Bloom FE, Kupfer DJ (editors) Psychopharmacology. The fourth generation of progress. New York; Raven Press 1995: 321-333
  • 5 Bel N, Artigas F. In vivo effects of simultaneous blockade of serotonin and norepinephrine transporters on serotonergic function: Microdialysis studies.  J Pharmacol Exp Ther. 1996;  278 1064-1072
  • 6 Berendsen H HG, Jenck F, Broekkamp C LE. Selective activation of 5-HT1A receptors induces lower lip retraction in the rat.  Pharmacol Biochem Behav. 1989;  33 821-827
  • 7 Bhattacharya S K, Chakrabarti A, Chatterjee S S. Activity profiles of two hyperforin-containing hypericum extracts in behavioral models.  Pharmacopsychiatry. 1998;  31 ( Suppl 1) 22-29
  • 8 Biegon A, Israeli M. Regionally selective increases in beta-adrenergic receptor density in the brains of suicide victims.  Brain Res. 1988;  442 199-203
  • 9 Bunney W E, Garland-Bunney B, Patel S B. Biological markers in depression.  Psychopathology. 1986;  19 72-78
  • 10 Butterweck V, Petereit F, Winterhoff H, Nahrstedt A. Solubilized hypericin and pseudohypericin from Hypericum perforatum exert antidepressant activity in the forced swimming test.  Planta Med. 1998;  64 291-294
  • 11 Butterweck V, Wall A, Lieflander-Wulf U, Winterhoff H, Nahrstedt A. Effects of the total extract and fractions of Hypericum perforatum in animal assays for antidepressant activity.  Pharmacopsychiatry. 1997;  30 ( Suppl 2) 117-124
  • 12 Charney D S. Monoamine dysfunction and the pathophysiology and treatment of depression.  J Clin Psychiatry. 1998;  59 11-14
  • 13 Chatterjee S S, Bhattacharya S K, Wonnemann M, Singer A, Müller W E. Hyperforin as a possible antidepressant component of hypericum extracts.  Life Sci. 1998;  63 499-510
  • 14 Coppen A. The biochemistry of affective disorders.  Br J Psychiatry. 1967;  113 1237-1264
  • 15 Cott J M. In vitro receptor binding and enzyme inhibition by Hypericum perforatum extract.  Pharmacopsychiatry. 1997;  30 ( Suppl 2) 108-112
  • 16 Crespi D, Mennini T, Gobbi M. Carrier-dependent and Ca(2+)-dependent 5-HT and dopamine release induced by (+)-amphetamine, 3,4-methylendioxymethamphetamine, p- chloroamphetamine and (+)-fenfluramine.  Br J Pharmacol. 1997;  121 1735-1743
  • 17 Daniel W, Adamus A, Melzacka M, Szymura J. The route of administration of imipramine as a factor affecting formation of its metabolite desipramine.  J Pharm Pharmacol. 1982;  34 678-680
  • 18 Daniel W, Adamus A, Melzacka M, Szymura J, Vetulani J. Cerebral pharmacokinetics of imipramine in rats after single and multiple dosages.  Naunyn Schmiedebergs Arch Pharmacol. 1981;  317 209-213
  • 19 Daniel W, Melzacka M. A comparative study on desipramine pharmacokinetics in the rat brain after administration of desipramine or imipramine.  J Pharm Pharmacol. 1992;  44 429-432
  • 20 Daws L C, Lopez R, Frazer A. Effects of antidepressant treatment on inhibitory avoidance behavior and amygdaloid beta-adrenoceptors in rats.  Neuropsychopharmacology. 1998a;  19 300-313
  • 21 Daws L C, Toney G M, Gerhardt G A, Frazer A. In vivo chronoamperometric measures of extracellular serotonin clearance in rat dorsal hippocampus: contribution of serotonin and norepinephrine transporters.  J Pharmacol Exp Ther. 1998b;  286 967-976
  • 22 De Paermentier F, Cheetham S C, Crompton M R, Katona C L, Horton R W. Brain beta-adrenoceptor binding sites in antidepressant-free depressed suicide victims.  Brain Res. 1990;  525 71-77
  • 23 De Paermentier F, Crompton M R, Katona C L, Horton R W. beta-Adrenoceptors in brain and pineal from depressed suicide victims.  Pharmacol Toxicol. 1992;  71 86-95
  • 24 De Vry J, Maurel S, Schreiber R, de Beun R, Jentzsch K R. Comparison of hypericum extracts with imipramine and fluoxetine in animal models of depression and alcoholism.  Eur Neuropsychopharmacol. 1999;  9 461-468
  • 25 Decker M W, Curzon P, Brioni J D. Influence of separate and combined septal and amygdala lesions on memory, acoustic startle, anxiety, and locomotor activity in rats.  Neurobiol Learn Mem. 1995;  64 156-168
  • 26 Decker M W, Gill T M, McGaugh J L. Concurrent muscarinic and beta-adrenergic blockade in rats impairs place-learning in a water maze and retention of inhibitory avoidance.  Brain Res. 1990;  513 81-85
  • 27 Duncan G E, Paul I A, Breese G R. Neuroanatomical differences in the rate of beta-adrenergic receptor adaptation after repeated treatment with imipramine.  Psychopharmacol Bull. 1993;  29 401-407
  • 28 Fritze J. The adrenergic-cholinergic imbalance hypothesis of depression: a review and a perspective.  Rev Neurosci. 1993;  4 63-93
  • 29 Fujii T, Ohba S, Nakai K, Fujimoto K, Suzuki T, Kawashima K. Enhancement of the serotonin-mediated acetylcholine release by repeated desmethylimipramine treatment in the hippocampus of freely moving rats.  Jpn J Pharmacol. 1999;  80 303-309
  • 30 Gallagher M, Chiba A A. The amygdala and emotion.  Curr Opin Neurobiol. 1996;  6 221-227
  • 31 Gallagher M, Kapp B S, Musty R E, Driscoll P A. Memory formation: evidence for a specific neurochemical system in the amygdala.  Science. 1977;  198 423-425
  • 32 Gambarana C, Ghiglieri O, Tolu P, De Montis M G, Giachetti D, Bombardelli E, Tagliamonte A. Efficacy of an Hypericum perforatum (St. John’s wort) extract in preventing and reverting a condition of escape deficit in rats.  Neuropsychopharmacology. 1999;  21 247-257
  • 33 Golden R N, Potter W Z. Neurochemical and neuroendocrine dysregulation in affective disorders.  Psychiatr Clin North Am. 1986;  9 313-327
  • 34 Goodnick P J, Goldstein B J. Selective serotonin reuptake inhibitors in affective disorders - I. Basic pharmacology.  J Psychopharmacol. 1998;  12 S5-S20
  • 35 Grahame-Smith D G. Studies in vivo on the relationship between brain tryptophan, brain 5-HT synthesis and hyperactivity in rats treated with a monoamine oxidase inhibitor and L-tryptophan.  J Neurochem. 1971;  18 1053-1066
  • 36 Gurguis G N, Turkka J, Laruelle M, Kleinman J, Linnoila M. Coupling efficiency of brain beta-adrenergic receptors to Gs protein in suicide, alcoholism and control subjects.  Psychopharmacology. 1999;  145 31-38
  • 37 Izquierdo I, Medina J H. Memory formation: the sequence of biochemical events in the hippocampus and its connection to activity in other brain structures.  Neurobiol Learn Mem. 1997;  68 285-316
  • 38 Jacobs B L. An animal behavior model for studying central serotonergic synapses.  Life Sci. 1976;  19 777-785
  • 39 Kaehler S T, Sinner C, Chatterjee S S, Philippu A. Hyperforin enhances the extracellular concentrations of catecholamines, serotonin and glutamate in the rat locus coeruleus.  Neurosci Lett. 1999;  262 199-202
  • 40 Kaufmann C A, Gillin J C, Hill B, O’Laughlin T, Phillips I, Kleinman J E, Wyatt R J. Muscarinic binding in suicides.  Psychiatry Res. 1984;  12 47-55
  • 41 Kim H L, Streltzer J, Goebert D. St. John’s wort for depression: a meta-analysis of well-defined clinical trials.  J Nerv Ment Dis. 1999;  187 532-538
  • 42 Kirk R E. Experimental design: Procedures for the behavioural sciences. Belmont, CA; Brooks/Cole 1968
  • 43 Lavond D G, Kim J J, Thompson R F. Mammalian brain substrates of aversive classical conditioning.  Annu Rev Psychol. 1993;  44 317-342
  • 44 Ledoux J E, Müller J. Emotional memory and psychopathology.  Philos Trans R Soc Lond B Biol Sci. 1997;  352 1719-1726
  • 45 Lester H A, Mager S, Quick M W, Corey J L. Permeation properties of neurotransmitter transporters.  Annu Rev Pharmacol Toxicol. 1994;  34 219-249
  • 46 Maj J, Melzacka M, Mogilnicka E, Daniel W. Different pharmacokinetic and pharmacological effects following acute and chronic treatment with imipramine.  J Neural Transm. 1982;  54 219-228
  • 47 Mann J J, Halper J P, Wilner P J, Sweeney J A, Mieczkowski T A, Chen J S, Stokes P E, Brown R P. Subsensitivity of adenylyl cyclase-coupled receptors on mononuclear leukocytes from drug-free inpatients with a major depressive episode.  Biol Psychiatry. 1997;  42 859-870
  • 48 Meyerson L R, Wennogle L P, Abel M S, Coupet J, Lippa A S, Rauh C E, Beer B. Human brain receptor alterations in suicide victims.  Pharmacol Biochem Behav. 1982;  17 159-163
  • 49 Misane I, Ögren S O. Multiple 5-HT receptors in passive avoidance: comparative studies of p-chloroamphetamine and 8-OH-DPAT.  Neuropsychopharmacology. 2000;  22 168-190
  • 50 Müller W E, Rolli M, Schafer C, Hafner U. Effects of hypericum extract (LI 160) in biochemical models of antidepressant activity.  Pharmacopsychiatry. 1997;  30 ( Suppl 2) 102-107
  • 51 Müller W E, Singer A, Wonnemann M, Hafner U, Rolli M, Schafer C. Hyperforin represents the neurotransmitter reuptake inhibiting constituent of hypericum extract.  Pharmacopsychiatry. 1998;  31 ( Suppl 1) 16-21
  • 52 Mulrow C D, Williams J W, Trivedi M, Chiquette E, Aguilar C, Cornell J E, Badgett R, Noel P H, Lawrence V, Lee S, Luther M, Ramirez G, Richardson W S, Stamm K. Treatment of depression - newer pharmacotherapies.  Psychopharmacol Bull. 1998;  34 409-795
  • 53 Nahrstedt A, Butterweck V. Biologically active and other chemical constituents of the herb of Hypericum perforatum L.  Pharmacopsychiatry. 1997;  30 ( Suppl 2) 129-134
  • 54 Ögren S O. Central serotonin neurones in avoidance learning: interactions with noradrenaline and dopamine neurones.  Pharmacol Biochem Behav. 1985a;  23 107-123
  • 55 Ögren S O. Evidence for a role of brain serotonergic neurotransmission in avoidance learning.  Acta Physiol Scand Suppl. 1985b;  544 1-71
  • 56 Okpanyi S N, Weischer M L. Animal experiments on the psychotropic action of a Hypericum extract.  Arzneimittelforschung. 1987;  37 10-13
  • 57 Ordway G A, Gambarana C, Tejani-Butt S M, Areso P, Hauptmann M, Frazer A. Preferential reduction of binding of 125I-iodopindolol to beta-1 adrenoceptors in the amygdala of rat after antidepressant treatments.  J Pharmacol Exp Ther. 1991;  257 681-690
  • 58 Plenge P, Mellerup E T, Laursen H. Affinity modulation of [3H]imipramine, [3H]paroxetine and [3H]citalopram binding to the 5-HT transporter from brain and platelets.  Eur J Pharmacol. 1991;  206 243-250
  • 59 van Praag H M. Could some depressions be conditioned by derailment of serotonin/cortisol interaction?. In: Palomo T, Beninger RJ, Archer T (editors) Interactive monoaminergic disorders. Madrid; Editorial Sintesis 1999: 91-105
  • 60 Rehavi M, Maayani S, Sokolovsky M. Tricyclic antidepressants as antimuscarinic drugs: in vivo and in vitro studies.  Biochem Pharmacol. 1977;  26 1559-1567
  • 61 Richelson E. Cholinergic transmission. In: Bloom FE, Kupfer DJ (editors) Psychopharmacology. The fourth generation of progress. New York; Raven Press 1995: 125-134
  • 62 Singer A, Wonnemann M, Müller W E. Hyperforin, a major antidepressant constituent of St. John’s Wort, inhibits serotonin uptake by elevating free intracellular Na+1.  J Pharmacol Exp Ther. 1999;  290 1363-1368
  • 63 Snyder S H, Yamamura H I. Antidepressants and the muscarinic acetylcholine receptor.  Arch Gen Psychiatry. 1977;  34 236-239
  • 64 Stahl S M. Basic psychopharmacology of antidepressants. Part 1: Antidepressants have seven distinct mechanisms of action.  J Clin Psychiatry. 1998;  59 5-14
  • 65 Stevinson C, Ernst E. Hypericum for depression. An update of the clinical evidence.  Eur Neuropsychopharmacol. 1999;  9 501-505
  • 66 Suzuki O, Katsumata Y, Oya M, Bladt S, Wagner H. Inhibition of monoamine oxidase by hypericin.  Planta Med. 1984;  50 272-274
  • 67 Trulson M E, Jacobs B L. Behavioral evidence for the rapid release of CNS serotonin by PCA and fenfluramine.  Eur J Pharmacol. 1976;  36 149-154

Dr. Ilga Misane

Department of Molecular Neuroendocrinology
Max Planck Institute for Experimental Medicine

Hermann Rein Strasse 3

37075 Goettingen

Germany

Phone: +49-551-3899-400

Fax: +49-551-3899-439

Email: Misane@mail.em.mpg.de

    >