Neuropediatrics 2001; 32(3): 123-129
DOI: 10.1055/s-2001-16613
Hypothesis

Georg Thieme Verlag Stuttgart · New York

Cause of Progression in Duchenne Muscular Dystrophy: Impaired Differentiation More Probable Than Replicative Aging

K. Oexle1 , A. Kohlschütter2
  • 1 Abteilung für Stoffwechsel und Molekulare Pädiatrie, Kinderspital, Universität Zürich, Switzerland
  • 2 Sektion Neurochemie und Stoffwechsel, Kinderklinik, Universitätskrankenhaus Eppendorf (UKE), Hamburg, Germany
Further Information

Publication History

Publication Date:
24 August 2001 (online)

Replicative aging of myogenic cells (satellite cells) owing to enhanced myofiber turnover is a common explanation of the progression of Duchenne muscular dystrophy (DMD). This hypothesis has been reexamined recently by telomere length measurements in dystrophic tissue. We evaluate the controversial results of these studies. We also review a large body of in vitro, animal (mdx), and patient data which indicate that impaired differentiation, but not replicative aging, is the leading cause of progression in DMD. We recommend in vivo investigations of cell kinetics in DMD muscle, as well as telomere length and telomerase analyses of DMD satellite cells in vitro for a definite judgement of the replicative aging hypothesis. Analogous investigations were helpful in AIDS research where replicative aging was embraced as a simple explanation of the paradigmatic CD4 lymphocyte decline but had to be rejected in favour of more complex models of disturbed lymphocyte homeostasis and regeneration. The question of replicative aging versus impaired differentiation is relevant for the understanding of therapeutic failures and the design of new strategies. Impaired differentiation is compatible with the failure of myoblast transfer in DMD and calls for further studies on the myofiber environment. Replicative aging, on the other hand, could possibly be treated by telomerase gene delivery.

References

  • 1 Allsopp R C, Chang E, Kashefi-Aazam M, Rogaev E I, Piatyszek M A, Shay J W. et al . Telomere shortening is associated with cell division in vitro and in vivo. .  Exp Cell Res. 1995;  220 194-200
  • 2 Arahata K, Engel A G. Monoclonal antibody analysis of mononuclear cells in myopathies. I: Quantitation of subsets according to diagnosis and sites of accumulation and demonstration and counts of muscle fibers invaded by T cells.  Ann Neurol. 1984;  16 193-208
  • 3 Betto R, Senter L, Ceoldo S, Tarricone E, Biral D, Salvati G. Ecto-ATPase activity of alpha sarcoglycan (adhalin).  J Biol Chem. 1999;  274 7907-7912
  • 4 Blau H M, Webster C, Pavlath G K. Defective myoblasts identified in Duchenne muscular dystrophy.  Proc Natl Acad Sci USA. 1983;  80 4856-4860
  • 5 Bockhold K J, Rosenblatt J D, Partridge T A. Aging normal and dystrophic mouse muscle: analysis of myogenicity in cultures of living single fibers.  Muscle Nerve. 1998;  21 173-183
  • 6 Brasseur G, Onolfo J P, Copin H, Leperchey F, Barbet J P. Dégénérescence et régénération des fibres musculaires striées squelettiques dans la myopathie de Duchenne.  Bull Assoc Anat. 1997;  81 9-13
  • 7 Brenman J E, Chao D S, Xia H, Aldape K, Bredt D S. Nitric oxide synthase complexed with dystrophin and absent from skeletal muscle sarcolemma in Duchenne muscular dystrophy.  Cell. 1995;  82 743-752
  • 8 Brussee V, Merly F, Tardif F, Tremblay J P. Normal myoblast implantation in mdx mice prevents muscle damage by exercise.  Biochem Biophys Res Commun. 1998;  250 321-327
  • 9 Burr I M, Asayama K, Fenichel G M. Superoxide dismutases, glutathione peroxidase, and catalase in neuromuscular disease.  Muscle Nerve. 1987;  10 150-154
  • 10 Crosbie R H, Straub V, Yun H-Y, Lee J C, Rafael J A, Chamberlain J S. et al . Mdx muscle perturbation is independent of nNOS perturbation.  Hum Mol Genet. 1998;  7 823-829
  • 11 Decary S, Mouly V, Ben Hamida C, Sautet A, Barbet J P, Butler-Browne G S. Replicative potential and telomere length in human skeletal muscle: implications for satellite cell-mediated gene therapy.  Hum Gene Ther. 1997;  8 1429-1438
  • 12 Decary S, Ben Hamida C, Mouly V, Barbet J P, Hentati F, Butler-Browne G S. Shorter telomeres in dystrophic muscle consistent with extensive regeneration in young children.  Neuromusc Disord. 2000;  10 113-120
  • 13 Deconinck A E, Rafael J A, Skinner J A, Brown S C, Potter A C, Metzinger L. et al . Utrophin-dystrophin-deficient mice as a model for Duchenne muscular dystrophy.  Cell. 1997;  90 717-727
  • 14 de Haan J B, Cristiano F, Iannello R, Bladier C, Kelner M J, Kola I. Elevation in the ratio of Cu/Zn-superoxide dismutase to glutathione peroxidase activity induces features of cellular senescence and this effect is mediated by hydrogen peroxide.  Hum Mol Genet. 1996;  5 283-292
  • 15 Delaporte C, Dehaupas M, Fardeau M. Comparison between the growth pattern of cell cultures from normal and Duchenne dystrophic muscle.  J Neurol Sci. 1984;  64 149-160
  • 16 Engel A G, Yamamoto M, Fischbeck K H. Dystrophinopathies. Engel AG, Franzini-Armstrong C Myology II. 2nd ed. New York; McGraw-Hill 1994: 1133-1187
  • 17 Ferrari G, Cusella-De Angelis G, Coletta M, Paolucci E, Stornaiuolo A, Cossu G. et al . Muscle regeneration by bone marrow-derived myogenic progenitors.  Science. 1998;  279 1528-1530
  • 18 Florini J R, Magri K A. Effects of growth factors on myogenic differentiation.  Am J Physiol. 1989;  256 C701-C711
  • 19 Grounds M D, McGeachie J K. Myogenic cells of regenerating adult chicken muscle can fuse into myotubes after a single cell division in vivo. .  Exp Cell Res. 1989;  180 429-439
  • 20 Gussoni E, Blau H M, Kunkel L M. The fate of individual myoblasts after transplantation into muscles of DMD patients.  Nature Med. 1997;  3 970-977
  • 21 Hack A A, Cordier L, Shoturma D I, Lam M Y, Sweeney H L, McNally E M. Muscle degeneration without mechanical injury in sarcoglycan deficiency.  Proc Natl Acad Sci USA. 1999;  96 10723-10728
  • 22 Hayashi Y K, Chou F-L, Engvall E, Ogawa M, Matsuda C, Hirabayashi S. et al . Mutations in the integrin alpha 7 gene cause congenital myopathy.  Nature Genet. 1998;  19 94-97
  • 23 Helbling-Leclerc A, Zhang X, Topaloglu H, Tomé F M, Sewry C, Gyapay G. et al . Mutations in the laminin α2-chain gene (LAMA2) cause merosin-deficient congenital muscular dystrophy.  Nature Genet. 1995;  11 216-218
  • 24 Hellerstein M, Hanley M B, Cesar D, Siler S, Papageorgopoulos C, Wieder E. et al . Directly measured kinetics of circulating T lymphocytes in normal and HIV-1-infected humans.  Nature Med. 1999;  5 83-89
  • 25 Higuchi I, Kawai H, Kawajiri M, Fukunaga H, Niiyama T, Nakagawa M. et al . Statistically significant differences in the number of CD24 positive muscle fibers and satellite cells between sarcoglycanopathy and age-matched Becker muscular dystrophy patients.  Intern Med. 1999;  38 412-415
  • 26 Ho D D, Neumann A U, Perelson A S, Chen W, Leonard J M, Markowitz M. et al . Rapid turnover of plasma virions and CD4 lymphocytes in HIV-1 infection.  Nature. 1995;  373 123-126
  • 27 Hübner C, Lehr H-A, Bodlaj A, Finckh B, Oexle K, Marklund S L. et al . Wheat kernel ingestion protects from progression of muscle weakness in mdx mice, an animal model of Duchenne muscular dystrophy.  Pediatr Res. 1996;  40 444-449
  • 28 Iannacone S T, Nagy B, Samaha F J. Decreased creatine kinase activity in cultured Duchenne dystrophic muscle cells.  J Child Neurol. 1987;  2 17-21
  • 29 Ishimoto S, Goto I, Ohta M, Kuroiwa Y. A quantitative study of the muscle satellite cells in various neuromuscular disorders.  J Neurol Sci. 1983;  62 303-314
  • 30 Jachson K A, Mi T, Goodell M A. Hematopoietic potential of stem cells isolated from murine skeletal muscle.  Proc Natl Acad Sci USA. 1999;  96 14482-14486
  • 31 Jasmin G, Tautu C, Vanasse M, Brochu P, Simoneau R. Impaired muscle differentiation in explant cultures of Duchenne muscular dystrophy.  Lab Invest. 1984;  50 197-207
  • 32 Karpati G, Ajdukovic D, Arnold D, Gledhill R B, Guttman R, Holland P. et al . Myoblast transfer in Duchenne muscular dystrophy.  Ann Neurol. 1993;  34 8-17
  • 33 Kaushal S, Landay A L, Lederman M M, Connick E, Spritzler J, Kuritzkes D R. et al . Increases in T cell telomere length in HIV infection after antiretroviral combination therapy for HIV-1 infection implicate distinct population dynamics in CD4 + and CD8 + T cells.  Clin Immunol. 1999;  92 14-24
  • 34 Kitada T, Seki S, Kawakita N, Kuroki T, Monna T. Telomere shortening in chronic liver diseases.  Biochem Biophys Res Commun. 1995;  211 33-39
  • 35 Kong J, Anderson J E. et al . Dystrophin is required for organizing large acetylcholine receptor aggregates.  Brain Res. 1999;  839 298-304
  • 36 Krämer R, Lochmüller H, Abicht A, Rüdel R, Brinkmeier H. et al . Myotonic ADR-MDX mutant mice show less severe muscular dystrophy than MDX mice.  Neuromusc Disord. 1998;  8 542-550
  • 37 Lansdorp P M, Verwoerd N P, van de Rijke F M, Dragowska V, Little M-T, Dirks R W. Heterogeneity in telomere length of human chromosomes.  Hum Mol Genet. 1996;  5 685-691
  • 38 Lee K H, Back M Y, Moon Song K YWK, Chung C H, Ha D B. et al . Nitric oxide as a messenger molecule for myoblast fusion.  J Biol Chem. 1994;  269 14371-14374
  • 39 Lipton B H. Skeletal muscle regeneration in muscular dystrophy. Mauro A Muscle Regeneration. New York; Raven Press 1979: 493-507
  • 40 Macallan D C, Fullerton C A, Neese R A, Haddock K, Park S S, Hellerstein M K. Measurement of cell proliferation by labeling of DNA with stable isotope-labeled glucose; studies in vitro, in animals, and in humans.  Proc Natl Acad Sci USA. 1998;  95 708-713
  • 41 McGeachie J K, Grounds M D, Partridge T A, Morgan J E. Age-related changes in replication of myogenic cells in mdx mice: quantitative autoradiograpghic studies.  J Neurol Sci. 1993;  119 169-179
  • 42 Megeney L A, Perry R LS, LeCouter J E, Rudnicki M A. MyoD is required for myogenic stem cell function in adult skeletal muscle.  Genes Dev. 1996;  10 1173-1183
  • 43 Melone M AB, Peluso G, Petillo O, Galdertisi U, Cotrufo R. Defective growth in vitro of Duchenne muscular dystrophy myoblasts: the molecular and biochemical basis.  J Cell Biochem. 1999;  76 118-132
  • 44 Mendell J R, Kissel J T, Amato A A, King W, Signore L, Prior T W. et al . Myoblast transfer in the treatment of Duchenne's muscular dystrophy.  N Eng J Med. 1995;  333 832-838
  • 45 Merly F, Lescaudron L, Rouaud T, Crossin F, Gardahaut M F. Macrophages enhance muscle satellite cell proliferation and delay their differentiation.  Muscle Nerve. 1999;  22 724-732
  • 46 Metcalfe J A, Parkhill J, Campbell L, Stacey M, Biggs P, Bryrd P. et al . Accelerated telomere shortening in ataxia telangiectasia.  Nature Genet. 1996;  13 350-353
  • 47 Miller R G, Sharma K R, Pavlath G K, Gussoni E, Mynhier M, Lanctot A M. et al . Myoblast implantation in Duchenne muscular dystrophy: the San Francisco Study.  Muscle Nerve. 1997;  20 469-478
  • 48 Morandi L, Bernasconi P, Gebbia M, Mora M, Crosti F, Mantegazza R. et al . Lack of mRNA and dystrophin expression in DMD patients three months after myoblast transfer.  Neuromusc Disord. 1995;  5 291-295
  • 49 Moreira E S, Wiltshire T J, Faulkner G, Nilforoushan A, Vianzof M, Suzuki O T. et al . Limb-girdle muscular dystrophy type 2G is caused by mutations in the gene encoding the sarcomeric protein telethonin.  Nature Genet. 2000;  24 163-166
  • 50 Morgan J E, Fletcher R M, Partridge T A. Yields of muscle from myogenic cells implanted into young and old mdx hosts.  Muscle Nerve. 1996;  19 132-139
  • 51 Moyzis R K, Buckingham J M, Cram L S, Dani M, Deavan L L, Jones M D. et al . A highly conserved repetitive DNA sequence, (TTAGGG)n, present at the telomeres of human chromosomes.  Proc Natl Acad Sci USA. 1988;  85 6622-6626
  • 52 Murakami N, McLennan I S, Nonaka I, Koishi K, Baker C, Hammond-Tooke G. Transforming growth factor-β2 is elevated in skeletal muscle disorders.  Muscle Nerve. 1999;  22 889-898
  • 53 Oexle K. Prednisone therapy for Duchenne's muscular dystrophy.  N Engl J Med. 1989;  321 1481-1482
  • 54 Oexle K. Steroids in Duchenne muscular dystrophy.  Neurology. 1994;  44 1558-1559
  • 55 Oexle K, Zwirner A, Freudenberg K, Kohlschütter A, Speer A. Examination of muscular telomere lengths casts doubt on replicative aging as cause of progression in Duchenne muscular dystrophy.  Pediatr Res. 1997;  42 226-231
  • 56 Oexle K. Telomere length distribution und Southern blot analysis.  J Theor Biol. 1998;  190 369-377
  • 57 Ozawa E, Noguchi S, Mizuno Y, Hagiwara Y, Yoshida M. From dystrophinopathy to sarcoglycanopathy: evolution of a concept of muscular dystrophy.  Muscle Nerve. 1998;  21 421-438
  • 58 Pagel C N, Partridge T A. Covert persistence of mdx mouse myopathy is revealed by acute and chronic effects of irradiation.  J Neurol Sci. 1999;  164 103-116
  • 59 Palmer L D, Weng N-P, Levine B L, June C H, Lane H C, Hodes R J. Telomere length, telomerase activity, and replicative potential in HIV infection: analysis of CD4 + and CD8 + T cells from HIV-discordant monozygotic twins.  J Exp Med. 1997;  185 1381-1386
  • 60 Pantaleo G. Unraveling the strands of HIV's web.  Nature Med. 1999;  5 27-28
  • 61 Pastoret C, Sebille A. Mdx mice show progressive weakness and muscle deterioration with age.  J Neurol Sci. 1995;  129 97-105
  • 62 Pendergrass W R, Li Y, Jiang D, Fei R G, Wolf N S. Caloric restriction: conservation of cellular replicative capacity in vitro accompanies life-span extension in mice.  Exp Cell Res. 1995;  217 309-316
  • 63 Pommier J P, Gauthier L, Livartowski J, Galanaud P, Boué F, Dulioust A. et al . Immunosenescence in HIV pathogenesis.  Virology. 1997;  231 148-154
  • 64 Rubin H. Cell aging in vivo and in vitro. .  Mech Ageing Dev. 1997;  98 1-35
  • 65 Rudolph K L, Chang S, Millard M, Schreiber-Agus N, DePinho R A. Inhibition of experimental liver cirrhosis in mice by telomerase gene delivery.  Science. 2000;  287 1253-1258
  • 66 Sabourin L A, Girgis-Gabardo A, Seale P, Asakura A, Rudnicki M A. Reduced differentiation potential of primary MyoD -/- myogenic cells derived from adult skeletal muscle.  J Cell Biol. 1999;  144 631-643
  • 67 Schmalbruch H. Regenerated muscle fibers in Duchenne muscular dystrophy: a serial section study.  Neurology. 1984;  34 60-65
  • 68 Skuk D, Tremblay J P. Progress in myoblast transplantation: a potential treatment of dystrophies.  Micros Res Tech. 2000;  48 213-222
  • 69 Tremblay J P, Bouchard J P, Malouin F, Theau D, Cottrell F, Collin H. et al . Myoblast transplantation between monozygotic twin girl carriers of Duchenne muscular dystrophy.  Neuromusc Disord. 1993;  3 583-592
  • 70 Vachon P H, Xu H, Liu L, Loechel F, Hayashi Y, Arahata K. et al . Integrins (α7β1) in muscle function and survival.  J Clin Invest. 1997;  100 1870-1881
  • 71 Vaziri H, Schächter F, Uchida I, Wei L, Zhu X, Effros R. et al . Loss of telomeric DNA during aging of normal and trisomy 21 human lymphocytes.  Am J Hum Genet. 1993;  52 661-667
  • 72 Wakeford S, Watt D J, Partridge T A. X-irradiation improves mdx mouse muscle as a model of myofiber loss in DMD.  Muscle Nerve. 1991;  14 42-50
  • 73 Webster C, Blau H M. Accelerated age-related decline in replicative life-span of Duchenne muscular dystrophy myoblasts: implications for cell and gene therapy.  Somat Cell Mol Genet. 1990;  16 557-565
  • 74 Weng N-P, Hathcock K S, Hodes R J. Regulation of telomere length and telomerase in T and B cells: a mechanism for maintaining replicative potential.  Immunity. 1998;  9 151-157
  • 75 Wolf N S, Penn P E, Jiang D, Fei R G, Pendergrass W R. Caloric restriction: conservation of in vivo cellular replicative capacity accompanies life-span extension in mice.  Exp Cell Res. 1995;  217 317-323
  • 76 Wolthers K C, Wisman G BA, Otto S A, de Roda Husman A-M, Schaft N, de Wolf F. et al . T cell telomere length in HIV-1 infection: no evidence for increased CD4 + T cell turnover.  Science. 1996;  274 1543-1547
  • 77 Yamazaki M, Minota S, Sakurai H, Miyazono K, Yamada A, Kanazawa I. et al . Expression of transforming growth factor-beta 1 and its relation to endomysial fibrosis in progressive muscular dystrophy.  Am J Pathol. 1994;  144 221-226
  • 78 Zeichner S L, Palumbo P, Feng Y, Xiao X, Gee D, Sleasman J. et al . Rapid telomere shortening in children.  Blood. 1999;  93 2824-2830

PD Dr. med. K. Oexle

Abteilung für Stoffwechsel und Molekulare Pädiatrie Kinderspital, Universität Zürich

Steinwiesstr. 75

8032 Zürich

Switzerland

Email: konrad.oexle@kispi.unizh.ch

Prof. Dr. A. Kohlschütter

Sektion Neurochemie und Stoffwechsel Kinderklinik, Universitätskrankenhaus Eppendorf (UKE)

Martinistr. 52

20246 Hamburg

Germany

Email: kohlschuetter@uke.uni-hamburg.de

    >