Semin Thromb Hemost 2001; 27(4): 325-336
DOI: 10.1055/s-2001-16886
Copyright © 2001 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA. Tel.: +1(212) 584-4662

The Production of Improved Tissue-Type Plasminogen Activator in Escherichia coli

Ralf Mattes
  • Institut für Industrielle Genetik, Universität Stuttgart, Stuttgart, Germany
Further Information

Publication History

Publication Date:
31 August 2001 (online)

ABSTRACT

Tissue-type plasminogen activator (t-PA) is a valuable thrombolytic agent because of its high affinity to fibrin. When produced in mammalian cell lines, it is glycosylated, a modification that is believed to promote its rapid clearance from the circulation. Bacteria such as Escherichia coli have been tested as alternative expression systems but were not able to express the cDNA of t-PA effectively. The coding sequence for t-PA revealed a significant proportion of AGA and AGG codons, which are rarely used in the coding sequences of E. coli. The argU and argW gene products of E. coli proved to be minor tRNAarg species, respectively decoding the very rare triplets AGA/AGG and AGG for arginine. Analysis of genomic fragments from E. coli for both tRNAarg genes revealed the presence of defective, cryptic prophages integrated within the impaired tRNA genes. Cloning and supplementation of the limiting tRNA genes argU and argW on helper plasmids improved the translation of the rare AGA and AGG codons. This augmentation improved bacterial growth and enhanced t-PA production in the form of inactive inclusion bodies. This dependence on augmentation of tRNAarg4 or tRNAarg5 for improved cell growth and expression was also observed for other genes with a high content of these rare arginine codons. Construction and production of nonglycosylated t-PA in inclusion bodies in E. coli along with improvement of the subsequent renaturation and purification procedures resulted in material comparable to that derived from CHO cells. Deletion of domain-encoding segments yielded various ``muteins'' of t-PA (e.g., reteplase [rPA]) that could be produced in and activated from the purified inclusion bodies analogously. Furthermore, it was shown that rPA has an extended half-life in the circulation because of its lack of glycosylation and impaired receptor binding capability. rPA was successfully used in various clinical studies. It is a new-generation thrombolytic agent with a longer half-life and can thus be administered more conveniently as a double bolus.

REFERENCES

  • 1 GISSI Investigators. Effectiveness of intravenous thrombolytic treatment in acute myocardial infarction. Gruppo Italiano per lo Studio della Streptochinasi nell'Infarto Miocardico (GISSI).  Lancet . 1986;  1 397-402
  • 2 ISIS-2 Investigators. Randomised trial of intravenous streptokinase, oral aspirin, both, or neither among 17,187 cases of suspected acute myocardial infarction: ISIS-2. ISIS-2 (Second International Study of Infarct Survival) Collaborative Group.  Lancet . 1988;  2 349-360
  • 3 Pennica D, Holmes W E, Kohr W J. Cloning and expression of human tissue-type plasminogen activator cDNA in E. coli .  Nature . 1983;  301 214-221
  • 4 Rijken D C, Hoylaerts M, Collen D. Fibrinolytic properties of one-chain and two-chain human extrinsic (tissue-type) plasminogen activator.  J Biol Chem . 1982;  257 2920-2925
  • 5 GUSTO Investigators. An international randomized trial comparing four thrombolytic strategies for acute myocardial infarction. The GUSTO investigators.  N Engl J Med . 1993;  329 673-682
  • 6 Vehar G A, Spellman M W, Keyt B A. Characterization studies of human tissue-type plasminogen activator produced by recombinant DNA technology.  Cold Spring Harb Symp Quant Biol . 1986;  51 551-562
  • 7 Fisher K L, Gorman C M, Vehar G A, O'Brien D P, Lawn R M. Cloning and expression of human tissue factor cDNA.  Thromb Res . 1987;  48 89-99
  • 8 Arathoon W R, Builder S E, Lubiniecki A S. Manufacture of biologically active plasminogen activator in suspension cultures of recombinant CHO cells.  U.S. Patent 5053334 1991.
  • 9 Wurm F M, Johnson A, Ryll T. Gene transfer and amplification in CHO cells. Efficient methods for maximizing specific productivity and assessment of genetic consequences.  Ann N Y Acad Sci . 1996;  782 70-78
  • 10 Werner R G, Noe W, Kopp K. Appropriate mammalian expression systems for biopharmaceuticals.  Editio Cantor Verlag Drug Res . 1998;  48(II)8 870-880
  • 11 Brinkmann U, Mattes R E, Buckel P. High-level expression of recombinant genes in Escherichia coli is dependent on the availability of the dnaY gene product.  Gene . 1989;  85 109-114
  • 12 Robinson M, Lilley R, Little S. Codon usage can affect efficiency of translation of genes in Escherichia coli Nucleic Acids Res .  1984;  12 6663-6671
  • 13 Bonekamp F, Andersen H D, Christensen T, Jensen K F. Codon-defined ribosomal pausing in Escherichia coli detected by using the pyrE attenuator to probe the coupling between transcription and translation.  Nucleic Acids Res . 1985;  13 4113-4123
  • 14 Ikemura T. Correlation between the abundance of Escherichia coli transfer RNAs and the occurrence of the respective codons in its protein genes.  J Mol Biol . 1981;  146 1-21
  • 15 Hoekema A, Kastelein R A, Vasser M, de Boer A H. Codon replacement in the PGK1 gene of Saccharomyces cerevisiae: experimental approach to study the role of biased codon usage in gene expression.  Mol Cell Biol . 1987;  7 2914-2924
  • 16 Lakey D L, Voladri R K, Edwards K M. Enhanced production of recombinant Mycobacterium tuberculosis antigens in Escherichia coli by replacement of low-usage codons.  Infect Immun . 2000;  68 233-238
  • 17 Calogero R A, Pon C L, Gualerzi C O. Chemical synthesis and in vivo hyperexpression of a modular gene coding for Escherichia coli translational initiation factor IF1.  Mol Gen Genet . 1987;  208 63-69
  • 18 Hale R S, Thompson G. Codon optimization of the gene encoding a domain from human type 1 neurofibromin protein results in a threefold improvement in expression level in Escherichia coli Protein Expr Purif .  1998;  12 185-188
  • 19 Sharp P M, Li W H. Codon usage in regulatory genes in Escherichia coli does not reflect selection for `rare' codons.  Nucleic Acids Res . 1986;  14 7737-7749
  • 20 Ernst J F, Kawashima E. Variations in codon usage are not correlated with heterologous gene expression in Saccharomyces cerevisiae and Escherichia coli J Biotechnol .  1988;  7 1-10
  • 21 Loshon C A, Tovar-Rojo F, Goldrick S, Setlow P. The expression of a highly expressed Bacillus subtilis gene is not reduced by introduction of multiple codons normally not present in such genes.  FEMS Microbiol Lett . 1989;  53 59-63
  • 22 Sorensen M A, Kurland C G, Pedersen S. Codon usage determines translation rate in Escherichia coli J Mol Biol .  1989;  207 365-377
  • 23 Dong H, Nilsson L, Kurland C G. Co-variation of tRNA abundance and codon usage in Escherichia coli at different growth rates.  J Mol Biol . 1996;  260 649-663
  • 24 Mullin D A, Garcia G M, Walker J R. An E. coli DNA fragment 118 base pairs in length provides dnaY + complementing activity.  Cell . 1984;  37 669-674
  • 25 Garcia G M, Mar P K, Mullin D A, Walker J R, Prather N E. The E. coli dnaY gene encodes an arginine transfer RNA.  Cell . 1986;  45 453-459
  • 26 Lindsey D F, Mullin D A, Walker J R. Characterization of the cryptic lambdoid prophage DLP12 of Escherichia coli and overlap of the DLP12 integrase gene with the tRNA gene argU J Bacteriol .  1989;  171 6197-6205
  • 27 Saxena P, Walker J R. Expression of argU, the Escherichia coli gene coding for a rare arginine tRNA.  J Bacteriol . 1992;  174 1956-1964
  • 28 Sharp P M, Cowe E, Higgins D G. Codon usage patterns in Escherichia coli, Bacillus subtilis, Saccharomyces cerevisiae, Schizosaccharomyces pombe, Drosophila melanogaster and Homo sapiens; a review of the considerable within-species diversity.  Nucleic Acids Res . 1988;  16 8207-8211
  • 29 Nakamura Y, Gojobori T, Ikemura T. Codon usage tabulated from international DNA sequence databases: status for the year 2000.  Nucleic Acids Res . 2000;  28 292
  • 30 Schenk P M, Baumann S, Mattes R, Steinbiss H H. Improved high-level expression system for eukaryotic genes in Escherichia coli using T7 RNA polymerase and rare ArgtRNAs.  Biotechniques . 1995;  19 196-200
  • 31 You J, Cohen R E, Pickart C M. Construct for high-level expression and low misincorporation of lysine for arginine during expression of pET-encoded eukaryotic proteins in Escherichia coli Biotechniques .  1999;  27 950-954
  • 32 Kleber-Janke T, Becker W M. Use of modified BL21(DE3) Escherichia coli cells for high-level expression of recombinant peanut allergens affected by poor codon usage.  Protein Expr Purif . 2000;  19 419-424
  • 33 Chen G T, Inouye M. Role of the AGA/AGG codons, the rarest codons in global gene expression in Escherichia coli Genes Dev .  1994;  8 2641-2652
  • 34 Boule J B, Johnson E, Rougeon F, Papanicolaou C. High-level expression of murine terminal deoxynucleotidyl transferase in Escherichia coli grown at low temperature and overexpressing argU tRNA.  Mol Biotechnol . 1998;  10 199-208
  • 35 Imamura H, Jeon B, Wakagi T, Matsuzawa H. High level expression of Thermococcus litoralis 4-alpha-glucanotransferase in a soluble form in Escherichia coli with a novel expression system involving minor arginine tRNAs and GroELS.  FEBS Lett . 1999;  457 393-396
  • 36 Roche E D, Sauer R T. SsrA-mediated peptide tagging caused by rare codons and tRNA scarcity.  EMBO J . 1999;  18 4579-4589
  • 37 Del Tito J B, Ward J M, Hodgson J. Effects of a minor isoleucyl tRNA on heterologous protein translation in Escherichia coli J Bacteriol .  1995;  177 7086-7091
  • 38 Muramatsu T, Nishikawa K, Nemoto F. Codon and amino-acid specificities of a transfer RNA are both converted by a single post-transcriptional modification.  Nature . 1988;  336 179-181
  • 39 Newman J V, Burghoff R L, Pallesen L. Stimulation of Escherichia coli F-18Col- type-1 fimbriae synthesis by leuX FEMS Microbiol Lett .  1994;  122 281-287
  • 40 Leskiw B K, Mah R, Lawlor E J, Chater K F. Accumulation of bldA-specified tRNA is temporally regulated in Streptomyces coelicolor A3(2).  J Bacteriol . 1993;  175 1995-2005
  • 41 Ueda Y, Taguchi S, Nishiyama K, Kumagai I, Miura K. Effect of a rare leucine codon, TTA, on expression of a foreign gene in Streptomyces lividans Biochim Biophys Acta .  1993;  1172 262-266
  • 42 Ivanov I, Alexandrova R, Dragulev B, Saraffova A, AbouHaidar M G. Effect of tandemly repeated AGG triplets on the translation of CAT-mRNA in E. coli FEBS Lett .  1992;  307 173-176
  • 43 Seetharam R, Heeren R A, Wong E Y. Mistranslation in IGF-1 during over-expression of the protein in Escherichia coli using a synthetic gene containing low frequency codons.  Biochem Biophys Res Commun . 1988;  155 518-523
  • 44 Calderone T L, Stevens R D, Oas T G. High-level misincorporation of lysine for arginine at AGA codons in a fusion protein expressed in Escherichia coli J Mol Biol .  1996;  262 407-412
  • 45 Forman M D, Stack R F, Masters P S, Hauer C R, Baxter S M. High level, context dependent misincorporation of lysine for arginine in Saccharomyces cerevisiae a1 homeodomain expressed in Escherichia coli Protein Sci .  1998;  7 500-503
  • 46 Rietsch A, Beckwith J. The genetics of disulfide bond metabolism.  Annu Rev Genet . 1998;  32 163-184
  • 47 Rippmann J F, Klein M, Hoischen C. Prokaryotic expression of single-chain variable-fragment (scFv) antibodies: secretion in L-form cells of Proteus mirabilis leads to active product and overcomes the limitations of periplasmic expression in Escherichia coli Appl Environ Microbiol .  1998;  64 4862-4869
  • 48 Derman A I, Prinz W A, Belin D, Beckwith J. Mutations that allow disulfide bond formation in the cytoplasm of Escherichia coli Science .  1993;  262 1744-1747
  • 49 Bessette P H, Aslund F, Beckwith J, Georgiou G. Efficient folding of proteins with multiple disulfide bonds in the Escherichia coli cytoplasm.  Proc Natl Acad Sci USA . 1999;  96 13703-13708
  • 50 Rudolph R, Lilie H. In vitro folding of inclusion body proteins.  FASEB J . 1996;  10 49-56
  • 51 Rudolph R, Fischer S, Mattes R. Process for the activation of t-PA or IgG after genetic expression in prokaryotes.  U.S. Patent 5453363 1995.
  • 52 Rudolph R, Fischer S, Mattes R. Process for the activating of gene-technologically produced heterologous disulfide bridge-containing eukaryotic proteins after expression in prokaryotes.  U.S. Patent 5593865 1997.
  • 53 Datar R V, Cartwright T, Rosen C G. Process economics of animal cell and bacterial fermentations: a case study analysis of tissue plasminogen activator.  Biotechnology . 1993;  11 349-357
  • 54 Banyai L, Varadi A, Patthy L. Common evolutionary origin of the fibrin-binding structures of fibronectin and tissue-type plasminogen activator.  FEBS Lett . 1983;  163 37-41
  • 55 van Zonneveld J A, Veerman H, Pannekoek H. Autonomous functions of structural domains on human tissue-type plasminogen activator.  Proc Natl Acad Sci USA . 1986;  83 4670-4674
  • 56 Rijken D C, Groeneveld E. Isolation and functional characterization of the heavy and light chains of human tissue-type plasminogen activator.  J Biol Chem . 1986;  261 3098-3102
  • 57 Holvoet P, Lijnen H R, Collen D. Characterization of functional domains in human tissue-type plasminogen activator with the use of monoclonal antibodies.  Eur J Biochem . 1986;  158 173-177
  • 58 Ny T, Elgh F, Lund B. The structure of the human tissue-type plasminogen activator gene: correlation of intron and exon structures to functional and structural domains.  Proc Natl Acad Sci USA . 1984;  81 5355-5359
  • 59 Weidle U H, Buckel P, Mattes R. A protease-hypersensitive deletion derivative of human tissue-type plasminogen activator.  Gene . 1988;  73 439-447
  • 60 Stern A, Mattes R, Buckel P, Weidle U H. Functional topology of human tissue-type plasminogen activator: characterization of two deletion derivatives and of a duplication derivative.  Gene . 1989;  79 333-344
  • 61 Korninger C, Stassen J M, Collen D. Turnover of human extrinsic (tissue-type) plasminogen activator in rabbits.  Thromb Haemost . 1981;  46 658-661
  • 62 Kuiper J, Otter M, Rijken D C, van Berkel J T. Characterization of the interaction in vivo of tissue-type plasminogen activator with liver cells.  J Biol Chem . 1988;  263 18220-18224
  • 63 Rijken D C, Emeis J J. Clearance of the heavy and light polypeptide chains of human tissue-type plasminogen activator in rats.  Biochem J . 1986;  238 643-646
  • 64 Stern A, Kohnert U, Rudolph R, Fischer S, Martin U. Thrombolytically active non-glycosylated protein.  U.S. Patent 5223256 1993.
  • 65 Martin U, Kohnert U, Stern A, Popp F, Fischer S. Comparison of the recombinant Escherichia coli-produced protease domain of tissue type plasminogen activator with alteplase, reteplase and streptokinase in a canine model of coronary artery thrombolysis.  Thromb Haemost . 1996;  76 1096-1101
  • 66 Martin U, Fischer S, Kohnert U. Properties of a novel plasminogen activator (BM 06.022) produced in Escherichia coli Z Kardiol .  1990 (suppl 3);  79 (167-170)
  • 67 Kohnert U, Rudolph R, Verheijen J H. Biochemical properties of the kringle 2 and protease domains are maintained in the refolded t-PA deletion variant BM 06.022.  Protein Eng . 1992;  5 93-100
  • 68 Kuiper J, van de Bilt H, Martin U, van Berkel J T. Uptake, internalization and degradation of the novel plasminogen activator reteplase (BM 06.022) in the rat.  Thromb Haemost . 1995;  74 1501-1510
  • 69 Rijken D C, Jie A F. Interaction of reteplase with heparin. A comparison between reteplase and alteplase.  Blood Coagul Fibrinolysis . 1996;  7 561-566
  • 70 Bode C, Smalling R W, Berg G. Randomized comparison of coronary thrombolysis achieved with double-bolus reteplase (recombinant plasminogen activator) and front-loaded, accelerated alteplase (recombinant tissue plasminogen activator) in patients with acute myocardial infarction. The RAPID II Investigators.  Circulation . 1996;  94 891-898
  • 71 Bode C, Nordt T K, Peter K, Smalling R W, Runge M S, Kubler W. Patency trials with reteplase (r-PA): what do they tell us?.  Am J Cardiol . 1996;  78 16-19
  • 72 GUSTO III Investigators. A comparison of reteplase with alteplase for acute myocardial infarction. The Global Use of Strategies to Open Occluded Coronary Arteries.  N Engl J Med . 1997;  337 1118-1123
  • 73 Martin U, Kaufmann B, Neugebauer G. Current clinical use of reteplase for thrombolysis. A pharmacokinetic-pharmacodynamic perspective.  Clin Pharmacokinet . 1999;  36 265-276
  • 74 Topol E J, Ohman E M, Armstrong P W. Survival outcomes 1 year after reperfusion therapy with either alteplase or reteplase for acute myocardial infarction: results from the global utilization of streptokinase and tPA for occluded coronary arteries (GUSTO) III trial.  Circulation . 2000;  102 1761-1765
  • 75 Tebbe U, Graf A, Kamke W. Hemodynamic effects of double bolus reteplase versus alteplase infusion in massive pulmonary embolism.  Am Heart J . 1999;  138 39-44
  • 76 Laird J R, Dangas G, Jaff M. Intra-arterial reteplase for the treatment of acute limb ischemia.  J Invasive Cardiol . 1999;  11 757-762
  • 77 Ouriel K, Katzen B, Mewissen M. Reteplase in the treatment of peripheral arterial and venous occlusions: a pilot study.  J Vasc Interv Radiol . 2000;  11 849-854
  • 78 Gurbel P A, Serebruany V L, Shustov A R. Effects of reteplase and alteplase on platelet aggregation and major receptor expression during the first 24 hours of acute myocardial infarction treatment. GUSTO-III Investigators. Global Use of Strategies to Open Occluded Coronary Arteries.  J Am Coll Cardiol . 1998;  31 1466-1473
  • 79 Seyedroudbari A, Kessler E R, Mooss A N. Time to treatment and cost of thrombolysis: a multicenter comparison of tPA and rPA.  J Thromb Thrombolysis . 2000;  9 303-308
  • 80 Verstraete M. Third-generation thrombolytic drugs.  Am J Med . 2000;  109 52-58
    >