Neuropediatrics 2001; 32(5): 231-235
DOI: 10.1055/s-2001-19116
Original Article

Georg Thieme Verlag Stuttgart · New York

Phenytoin-Induced Choreoathetosis in Patients with Severe Myoclonic Epilepsy in Infancy

Y. Saito1 , H. Oguni1 , Y. Awaya1, 2 , K. Hayashi1 , M. Osawa1
  • 1 Department of Pediatrics, Tokyo Women's Medical University, Shinjuku-ku, Tokyo, Japan
  • 2 Department of Pediatrics, Seibo International Catholic Hospital, Tokyo, Japan
Further Information

Publication History

Publication Date:
18 December 2001 (online)

Abstract

We describe three patients with severe myoclonic epilepsy in infancy (SME) who suffer from choreoathetosis due to the adverse effect of phenytoin. Choreoathetosis appeared when these patients were 8, 19, and 21 years old, 2 days to 6 months after increasing the phenytoin dosage. Choreoathetosis disappeared when the phenytoin dosage was decreased. The two elder patients experienced episodic and rather paroxysmal onset of long-lasting choreoathetosis, requiring the differential diagnosis from degenerative disease. In one of the patients, an ictal SPECT revealed decreased perfusion in the basal ganglia contralateral to the unilateral choreoathetosis. Polypharmacy, including carbamazepine and zonisamide, may have facilitated the onset of choreoathetosis. Phenytoin-induced choreoathetosis in the patients with SME is an important differential diagnosis among degenerative disorders involving involuntary movements. The episodic and paroxysmal nature of this movement disorder can delay its diagnosis and effective treatment. Patients with SME appear to be particularly vulnerable to this side effect of phenytoin, indicating the possible involvement of basal ganglia in the pathophysiology of this type of epilepsy.

References

  • 1 Agrawal S, Bhargava V. Effect of drugs on brain acetylcholine levels in rats.  Indian J Med Res. 1964;  52 1179-1182
  • 2 Bellman M H, Haas L. Toxic reaction to phenytoin.  Br Med J. 1974;  2 256-257
  • 3 Benzi G, Arrigoni E, Scelsi R, Marzatico F, Gorini A, Villa R F. Acetylcholine esterase sensitivity to chronic administration of diphenylhydantoin and effects on cerebral enzymatic activities related to energy metabolism.  Neuroshem Res. 1980;  5 905-911
  • 4 Bonnycastle D, Bonnycastle M, Anderson E. The effect of central depressant drugs upon brain 5-hydroxytryptamine levels in the rat.  J Pharmacol Exp Ther. 1962;  135 17-20
  • 5 Catterall W A. Molecular properties of brain sodium channels: an important target for anticonvulsant drugs.  Adv Neurol. 1999;  779 441-456
  • 6 Chadwick D, Jenner P, Reynolds E H. Amines, anticonvulsants, and epilepsy.  Lancet. 1975;  1 473-476
  • 7 Chalhub E G, DeVivo D C, Volpe J J. Phenytoin-induced dystonia and choreoathetosis in two retarded epileptic children.  Neurology. 1976;  26 494-498
  • 8 Claes L, Del-Favero J, Ceulemans B, Lagae L, Van Broeckhoven C, De Jonghe P. De novo mutations in the sodium-channel gene scn1a cause severe myoclonic epilepsy of infancy.  Am J Hum Genet. 2001;  68 1327-1332
  • 9 Crosley C J, Swender P T. Dystonia associated with carbamazepine administration: experience in brain-damaged children.  Pediatrics. 1979;  63 612-615
  • 10 DeVeaugh-Geiss J. Aggravation of tardive dyskinesia by phenytoin.  N Engl J Med. 1978;  298 457-458
  • 11 Dravet C, Bureau M, Guerrini R, Giraud N, Roger J. Severe myoclonic epilepsy in infants. Roger J, Bureau M, Dravet CH, Dreifuss FE, Perret A, Wolf P Epileptic Syndromes in Infancy, Childhood and Adolescence. 2nd ed. London; John Libbey 1992: 75-88
  • 12 Gong B, Rhodes K J, Bekele-Arcuri Z, Trimmer J S. Type I and type II Na+ channel α-subunit polypeptides exhibit distinct spatial and temporal patterning, and association with auxiliary subunits in rat brain.  J Comp Neurol. 1999;  412 342-352
  • 13 Hadfield M. Uptake and binding of catecholamines - effect of diphenylhydantoin and a new mechanism of action.  Arch Neurol. 1972;  26 78-84
  • 14 Harrison M B, Lyons G R, Landow E R. Phenytoin and dyskinesias: a report of two cases and review of the literature.  Mov Disord. 1993;  8 19-27
  • 15 Joyce R P, Gunderson C H. Carbamazepine-induced orofacial dyskinesia.  Neurology. 1980;  30 1333-1334
  • 16 Lalonde R. Dopaminergic supersensitivity after long-term administration of phenytoin in rats.  Epilepsia. 1985;  26 81-84
  • 17 Mendez J, Cotzias S, Meva I. et al . Diphenylhydantoin blocking of levodopa effects.  Arch Neurol. 1975;  32 44-46
  • 18 Mervaala E, Andermann F, Quesney L F, Krelina M. Common dopaminergic mechanism for epileptic photosensitivity in progressive myoclonus epilepsies.  Neurology. 1990;  40 53-56
  • 19 Montenegro M A, Scotoni A E, Cendes F. Dyskinesia induced by phenytoin.  Arq Neuropsiquiatr. 1999;  57 356-360
  • 20 Okada M, Kaneko S, Hirano T. et al . Effects of zonisamide on extracellular levels of monoamine and its metabolites, and on Ca2+ dependent dopamine release.  Epilepsy Res. 1992;  13 113-119
  • 21 Santiago M, Machado A, Cano J. Fast sodium channel dependency of the somatodendritic release of dopamine in the rat's brain.  Neurosci Lett. 1992;  148 145-147
  • 22 Surmeier D J, Kitai S T. D1 and D2 dopamine receptor modulation of sodium and potassium currents in rat neostriatal neurons.  Prog Brain Res. 1993;  99 309-324
  • 23 Tsuchiya S, Sakamoto T, Ishida S, Shirao I, Motooka H, Nakazawa Y. A case of refractory epilepsy with inexplicable involuntary body movement and hyperammonemia during treatment.  J Jpn Epil Soc. 1992;  10 130-137

M. D. Yoshiaki Saito

Department of Pediatrics
Tokyo Women's Medical University

8-1 Kawada-cho

Shinjuku-ku

Tokyo 162 - 8666

Japan

Email: saitoyo@tmin.ac.jp

    >