References
<A NAME="RG20201ST-1">1</A>
New address: BAYER AG, PH-R CR MC 1, D-42096 Wuppertal.
<A NAME="RG20201ST-2A">2a</A>
Fleming A.
Brit. J. Exp. Path.
1929,
10:
226
<A NAME="RG20201ST-2B">2b</A>
Chain E.
Florey HW.
Gardner AD.
Heatley NG.
Jennings MA.
Orr-Ewing J.
Sanders AG.
Lancet
1940,
226
<A NAME="RG20201ST-3">3</A>
Recent Progress in the Chemical Synthesis of Antibiotics
Lukas G.
Ohno M.
Springer;
Berlin:
1990.
<A NAME="RG20201ST-4A">4a</A>
Southgate R.
Branch C.
Coulton S.
Hunt E. In
Recent Progress in the Chemical Synthesis of Antibiotics and Related Microbial Products
Vol. 2:
Lukas G.
Springer;
Berlin:
1993.
p.621
<A NAME="RG20201ST-4B">4b</A>
Ojima I.
The Organic Chemistry of β-lactams
Georg GI.
VCH;
New York:
1993.
p.197
<A NAME="RG20201ST-5A">5a</A> E.g.:
Podlech J.
Linder MR.
J. Org. Chem.
1997,
62:
5873
<A NAME="RG20201ST-5B">5b</A> For a review on chromium carbene photochemistry see:
Hegedus LS.
Tetrahedron
1997,
53:
4105
<A NAME="RG20201ST-6">6</A>
Wagner PJ.
Park B.-S.
Org. Photochem.
1991,
11:
227
<A NAME="RG20201ST-7A">7a</A>
Griesbeck AG.
Liebigs Ann.
1996,
1951
<A NAME="RG20201ST-7B">7b</A>
Griesbeck AG.
Chimia
1998,
52:
272
<A NAME="RG20201ST-8A">8a</A>
Aoyama H.
Hasegawa T.
Watabe M.
Shiraishi H.
Omote Y.
J. Org. Chem.
1978,
43:
419
<A NAME="RG20201ST-8B">8b</A>
Aoyama H.
Hasegawa T.
Omote Y.
J. Am. Chem. Soc.
1979,
101:
5343
<A NAME="RG20201ST-9A">9a</A>
Aoyama H.
Sakamoto M.
Kawabara K.
Yoshida K.
Omote Y.
J. Am. Chem. Soc.
1983,
105:
1958
<A NAME="RG20201ST-9B">9b</A>
Aoyama H.
Sakamoto M.
Omote Y.
J. Chem. Soc., Perkin Trans. 1
1981,
1357
<A NAME="RG20201ST-9C">9c</A>
Chesta CA.
Whitten DG.
J. Am. Chem. Soc.
1992,
114:
2188
<A NAME="RG20201ST-10">10</A>
Scheffer JR.
Wang K.
Synthesis
2001,
1253
<A NAME="RG20201ST-11">11</A>
Feringa BL.
van Delden RA.
Angew. Chem. Int. Ed.
1999,
38:
3419
<A NAME="RG20201ST-12A">12a</A>
Toda F.
Yagi M.
Soda S.
J. Chem. Soc., Chem. Commun.
1987,
1413
<A NAME="RG20201ST-12B">12b</A>
Toda F.
Miyamoto H.
J. Chem. Soc., Perkin Trans. 1
1993,
1129
<A NAME="RG20201ST-12C">12c</A>
Hishizume D.
Kogo H.
Sekine A.
Ohashi Y.
Miyamoto H.
Toda F.
J. Chem. Soc., Perkin Trans. 2
1996,
61
<A NAME="RG20201ST-13">13</A>
Fuji K.
Kawabata T.
Chem.-Eur. J.
1998,
4:
373
<A NAME="RG20201ST-14">14</A>
Giese B.
Wettstein P.
Stähelin C.
Barbosa F.
Neuburger M.
Zehnder M.
Wessig P.
Angew. Chem. Int. Ed.
1999,
38:
2586
<A NAME="RG20201ST-15A">15a</A>
Griesbeck AG.
Kramer W.
Lex J.
Angew. Chem. Int. Ed.
2001,
40:
577
<A NAME="RG20201ST-15B">15b</A>
Griesbeck AG.
Kramer W.
Lex J.
Synthesis: Special Issue
2001,
1159
<A NAME="RG20201ST-16">16</A> Alternative process:
Ojiama I.
Yoda N.
Yatabe M.
Tanaka T.
Kogure KT.
Tetrahedron
1984,
40:
1255
<A NAME="RG20201ST-17">17</A> On the photochemical isomerization of β-lactams:
Alcázar R.
Ramírez P.
Vicente R.
Mancheno MJ.
Sierra MA.
Gómez-Gallego M.
Heterocycles
2001,
55:
511
<A NAME="RG20201ST-18A">18a</A>
Griesbeck AG.
Heckroth H.
Lex J.
Chem. Commun.
1999,
1109
<A NAME="RG20201ST-18B">18b</A>
Griesbeck, A. G.; Heckroth, H. J. Am. Chem. Soc. in press.
<A NAME="RG20201ST-19">19</A>
Experimental Procedure: The substrates were synthesized from the amino acid methyl ester HCl salts which
were coupled with equimolar amounts of phenyl glyoxylic acid, triethylamine, DCC and
10% of DMAP in CH2Cl2 and purified by column chromatography on silica. For photolysis, a 2 mM solution
of the substrate in acetonitrile (water cooled) was irradiated at 300 nm (Rayonet
photoreactor RPR-208) for 5-8 h at r.t. while purging with nitrogen gas. After evaporation
of the solvent, the crude reaction mixture was purified by column chromatography on
silica.
<A NAME="RG20201ST-20">20</A>
Selected spectral data for the valine derivatives cis- and trans-2d: 1H NMR of cis-2d (200 MHz, DMSO-d6): δ = 0.46 (d, 3 H, J = 6.6 Hz, CH3), 0.59 (d, 3 H, J = 6.7 Hz, CH3), 1.83 (dqq, 1 H, J = 0.8, 6.6, 6.7 Hz, CH), 3.72 (s, 3 H), 7.44 (mc, 5 H), 9.11 (d, 1 H, J = 0.8 Hz, NH). 13C NMR of cis-2d: δ = 16.9 (CH3), 18.4 (CH3), 31.6 (CH), 51.8 (CH3), 74.3 (Cq), 89.6 (Cq), 125.7 (Cq), 127.2 (CH), 128.1 (CH), 129.4 (CH), 133.1 (Cq), 137.6 (CH), 168.6 (Cq), 171.1 (Cq). 1H NMR of trans-2d (200 MHz, DMSO-d6): δ = 0.90 (d, 3 H, J = 6.8 Hz, CH3), 1.08 (d, 3 H, J = 6.7 Hz, CH3), 2.29 (dqq, 1 H, J = 0.8, 6.7, 6.8 Hz, CH), 3.04 (s, 3 H), 7.44 (mc, 5 H), 9.20 (d, 1 H, J = 0.8 Hz, NH). 13C NMR of trans-2d: δ = 18.3 (CH3), 18.5 (CH3), 32.8 (CH), 51.2 (CH3), 75.3 (Cq), 91.0 (Cq), 125.9 (Cq), 127.0 (CH), 128.6 (CH), 129.0 (CH), 133.1 (Cq), 137.2 (CH), 169.4 (Cq), 170.8 (Cq).
<A NAME="RG20201ST-21A">21a</A>
Griesbeck AG.
Mauder H.
Stadtmüller S.
Acc. Chem. Res.
1994,
27:
70
<A NAME="RG20201ST-21B">21b</A>
Kutateladze A.
J. Am. Chem. Soc.
2001,
123:
9279
<A NAME="RG20201ST-22">22</A>
Alternatively, subsequent introduction of a MEM group stabilized the β-lactams against
retro-aldol processes.
<A NAME="RG20201ST-23">23</A>
Johansson N.-G.
Akermark B.
Sjöberg B.
Acta Chem. Scand. B
1976,
30:
383
<A NAME="RG20201ST-24">24</A>
Gómez-Gallego M.
Mancheno MJ.
Sierra MA.
Tetrahedron
2000,
56:
5743
<A NAME="RG20201ST-25A">25a</A>
Hu SK.
Neckers DC.
Tetrahedron
1997,
53:
12771
<A NAME="RG20201ST-25B">25b</A>
Griesbeck AG.
Oelgemöller M.
Lex J.
J. Org. Chem.
2000,
65:
9028
<A NAME="RG20201ST-25C">25c</A>
Griesbeck AG.
Oelgemöller M.
Lex J.
Haeuseler A.
Schmittel M.
Eur. J. Org. Chem.
2001,
1831
<A NAME="RG20201ST-26">26</A> The contribution of asymmetric induction was expected to be very low in our case;
the isoleucine/allo-isoleucine system was described as a monitor for chirality memory:
Kawabata T.
Chen J.
Suzuki H.
Nagae Y.
Kinoshita T.
Chancharunee S.
Fuji K.
Org. Lett.
2000,
2:
3883