References
<A NAME="RY21801ST-1A">1a</A>
Ciganek E.
Organic Reactions
Vol. 51:
John Wiley and Sons;
New York:
1997.
p.201
<A NAME="RY21801ST-1B">1b</A>
Drewes SE.
Roos GHP.
Tetrahedron
1988,
44:
4653
<A NAME="RY21801ST-1C">1c</A>
Basavaiah D.
Rao PD.
Hyma RS.
Tetrahedron
1996,
52:
8001
<A NAME="RY21801ST-2A">2a</A>
Perlmutter P.
Teo CC.
Tetrahedron Lett.
1984,
25:
5951
<A NAME="RY21801ST-2B">2b</A>
Bertenshaw S.
Kahn M.
Tetrahedron Lett.
1989,
30:
2731
<A NAME="RY21801ST-2C">2c</A>
Kundig EP.
Xu LH.
Schnell B.
Synlett
1994,
413
<A NAME="RY21801ST-2D">2d</A>
Richter H.
Jung G.
Tetrahedron Lett.
1998,
39:
2729
<A NAME="RY21801ST-2E">2e</A>
Yamamoto K.
Takagi M.
Tsuji J.
Bull. Chem. Soc. Jpn.
1988,
61:
319
Quite recently Balan and Adolfsson have reported the facile synthesis of the Baylis-Hillman
adducts of N-tosylimines through a three-component reaction of arylaldehydes, tosylamide and a
Michael acceptor, see: (f)
Balan D.
Adolfsson H.
J. Org. Chem.
2001,
66:
6498
<A NAME="RY21801ST-3A">3a</A>
Kim JN.
Lee HJ.
Lee KY.
Kim HS.
Tetrahedron Lett.
2001,
42:
3737
<A NAME="RY21801ST-3B">3b</A>
Lee HJ.
Kim HS.
Kim JN.
Tetrahedron Lett.
1999,
40:
4363
<A NAME="RY21801ST-3C">3c</A>
Lee HJ.
Seong MR.
Kim JN.
Tetrahedron Lett.
1998,
39:
6223
<A NAME="RY21801ST-3D">3d</A>
Genisson Y.
Massardier C.
Gautier-Luneau I.
Greene AE.
J. Chem. Soc., Perkin Trans. 1
1996,
2869
<A NAME="RY21801ST-3E">3e</A>
Li G.
Kim SH.
Wei H.-X.
Tetrahedron
2000,
56:
719
<A NAME="RY21801ST-3F">3f</A>
Kundig EP.
Xu L.-H.
Romanens P.
Tetrahedron Lett.
1995,
36:
4047
<A NAME="RY21801ST-3G">3g</A>
Takagi M.
Yamamoto K.
Tetrahedron
1991,
47:
8869
For the synthesis of N-tosylimines, see:
<A NAME="RY21801ST-4A">4a</A>
Jennings WB.
Lovely CJ.
Tetrahedron
1991,
47:
5561
<A NAME="RY21801ST-4B">4b</A>
Trost BM.
Marrs C.
J. Org. Chem.
1991,
56:
6468
<A NAME="RY21801ST-4C">4c</A>
Boger DL.
Corbett WL.
J. Org. Chem.
1992,
57:
4777
<A NAME="RY21801ST-4D">4d</A>
Boger DL.
Corbett WL.
Curran TT.
Kasper AM.
J. Am. Chem. Soc.
1991,
113:
1713
<A NAME="RY21801ST-4E">4e</A>
Sisko J.
Weinreb SM.
Tetrahedron Lett.
1989,
30:
3037
<A NAME="RY21801ST-4F">4f</A>
Sisko J.
Weinreb SM.
J. Org. Chem.
1990,
55:
393
<A NAME="RY21801ST-4G">4g</A>
Georg GI.
Harriman GCB.
Peterson SA.
J. Org. Chem.
1995,
60:
7366
<A NAME="RY21801ST-4H">4h</A>
Love BE.
Raje PS.
Williams TCII.
Synlett
1994,
493
<A NAME="RY21801ST-5A">5a</A>
Im YJ.
Kim JM.
Mun JH.
Kim JN.
Bull. Korean Chem. Soc.
2001,
22:
349
<A NAME="RY21801ST-5B">5b</A>
Drewes SE.
Horn MM.
Ramesar N.
Synth. Commun.
2000,
30:
1045
<A NAME="RY21801ST-5C">5c</A>
Basavaiah D.
Kumaragurubaran N.
Tetrahedron Lett.
2001,
42:
477
<A NAME="RY21801ST-5D">5d</A>
Basavaiah D.
Kumaragurubaran N.
Sharada DS.
Tetrahedron Lett.
2001,
42:
85
Cyclohexene derivatives were obtained as diastereomeric mixtures from 1e and 1h via the elimination of acetic acid and concomitant Diels-Alder reaction. Diethyl
4-(1-hexenyl)-3-butyl-1-cyclohexene-1,4-dicarboxylate (for 1e) and 4-(1-hexenyl)-3-butyl-1,4-dicyano-1-cyclohexene (for 1h) were isolated in 43% and 48%, respectively, as an oil. For such reactions, see:
<A NAME="RY21801ST-6A">6a</A>
Poly W.
Schomburg D.
Hoffmann HMR.
J. Org. Chem.
1988,
53:
3701
<A NAME="RY21801ST-6B">6b</A>
Hoffmann HMR.
Eggert U.
Poly W.
Angew. Chem., Int. Ed. Engl.
1987,
26:
1015
<A NAME="RY21801ST-6C">6c</A>
Hoffman HMR.
Weichert A.
Slawin AMZ.
Williams DJ.
Tetrahedron
1990,
46:
5591
<A NAME="RY21801ST-7">7</A>
Other nucleophiles can be used in the reaction such as phenols and primary nitroalkanes,
which have the similar pKa values as that of tosylamide.
<A NAME="RY21801ST-8">8</A>
Trost BM.
Tsui H.-C.
Toste FD.
J. Am. Chem. Soc.
2000,
122:
3534
<A NAME="RY21801ST-9">9</A>
Typical Procedure for the Formation of 3a: To a stirred solution of the Baylis-Hillman acetate 1a (496 mg, 2.0 mmol) in aq THF (10 mL, H2O-THF, 1:1) was added DABCO (270 mg, 2.4 mmol) and stirred at r.t. for 10 min. To
the reaction mixture p-toluenesulfonamide (345 mg, 2.0 mmol) was added and the whole mixture was stirred
at 60-70 °C for 48 h. After the usual workup process and column chromatography (SiO2, hexane/ether, 1:1), 3a was obtained as a white solid, 540 mg (75%); mp 100-101 °C (ref.
[2a]
90-92 °C); IR (CH2Cl2): 3289, 1716, 1327, 1161 cm-1; 1H NMR (CDCl3): δ = 1.14 (t, J = 7.2 Hz, 3 H), 2.41 (s, 3 H), 4.04 (q, J = 7.2 Hz, 2 H), 5.30 (d, J = 9.0 Hz, 1 H), 5.65 (d, J = 9.0 Hz, 1 H), 5.81 (s, 1 H), 6.21 (s, 1 H), 7.13-7.69 (m, 9 H); 13C NMR (CDCl3): δ = 13.89, 21.46, 59.12, 60.97, 126.44, 127.21, 127.51, 127.66, 128.49, 129.44,
137.75, 138.75, 138.84, 143.29, 165.27; CIMS: m/z (%) = 189(92), 204(100), 205(15), 360(1) [MH+]. Anal. Calcd for C19H21NO4S: C, 63.49; H, 5.89; N, 3.90. Found: C, 63.32; H, 5.91; N, 3.94.