Facial Plast Surg 2002; 18(1): 013-026
DOI: 10.1055/s-2002-19823
Copyright © 2002 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA. Tel.: +1(212) 584-4662

Bone Healing and Bone Substitutes

Peter D. Costantino1, 2 , David Hiltzik1 , Satish Govindaraj1 , Jason Moche1
  • 1Department of Otolaryngology, Mount Sinai Medical Center, New York, NY
  • 2Center for Cranial Skull Base Surgery, St. Luke's-Roosevelt Hospital Center, New York, NY
Further Information

Publication History

Publication Date:
29 January 2002 (online)

ABSTRACT

With the advent of new biomaterials and surgical techniques, the reconstructive surgeon has a wider range of treatment modalities for the rehabilitation and reconstruction of craniofacial skeletal deformities than ever before. These innovative substances act as true bone graft substitutes, thereby allowing the surgeon to avoid the use of autogenous bone grafts and their associated donor site morbidity. Surgeons have long been interested in producing a composite graft that can heal faster by induction, incorporate with surrounding tissues, and be remodeled to resemble native bone. Currently, there are a host of bone graft substitutes available that vary in both their composition and properties. Craniomaxillofacial surgeons must therefore become comfortable with numerous biomaterials to best tailor the treatment for each patient individually. Ongoing investigations into the next phase of tissue engineering will continue to bring us closer to the ability to regenerate or replace bone.

REFERENCES

  • 1 Habal M B, Reddi H. Bone graft and bone induction substitutes.  Clin Plast Surg . 1994;  21 525-542
  • 2 Scales J T. Discussion on metals and synthetic materials in relation to soft tissue: tissue reaction to synthetic materials.  Proc R Soc Med . 1953;  45 647
  • 3 Berghaus A, Mulch G, Handrock M. Porous polyethylene and proplast: their behavior in a bony implant bed.  Arch Otolaryngol Head Neck Surg . 1984;  240 115-119
  • 4 Costantino P D, Hlitzik D H, Sen C. Sphenoethmoid cerebrospinal fluid leak repair with hydroxyapatite cement.  Arch Otolaryngol Head Neck Surg . 2001;  127 588-593
  • 5 Citardi M J, Friedman C D. Nonvascularized autogenous bone grafts for craniofacial skeletal augmentation and replacement.  Otolarygol Clin North Am . 1994;  27 891-908
  • 6 Habal M B. Bone grafting in craniofacial surgery.  Clin Plast Surg . 1994;  21 349-363
  • 7 Younger E M, Chapman M W. Morbidity at bone graft donor sites.  J Orthoped Trauma . 1989;  3 192-195
  • 8 Hench L L, Wilson J. Surface active biomaterials.  Science . 1984;  226 630-636
  • 9 Glowacki J, Mulliken J B. Demineralized bone implants.  Clin Plast Surg . 1985;  12 233-241
  • 10 Merwin G, Atkins J, Wilson J. Comparison of ossicular replacement material in a mouse ear model.  Otolaryngol Head Neck Surg . 1981;  90 461-469
  • 11 Merwin G E. Bioglass middle ear prosthesis: a preliminary report.  Ann Otol Rhinol Laryngol . 1986;  95 78-82
  • 12 Jonck L M, Grobbelaar C J, Strating H. Biological evaluation of glass-ionomer cement (Keta-O) as an interface in total joint replacement. A screening test.  Clin Mater . 1989;  4 201-224
  • 13 Wilson J, Pigott G H, Schoen F. Toxicology and biocompatibility of bioglasses.  J Biomed Mater Res . 1981;  15 805-817
  • 14 Geyer G, Helms J. Reconstructive measures in the middle ear and mastoid uing a biocompatible cement-preliminary clinical experience.  Clin Implant Mater . 1989;  4 201-224
  • 15 Baier G, Geyer G, Dieler R. Long-term outcome after reconstruction of the cranial base with ionomer cement.  Laryngorhinootlogie . 1998;  77 467-473
  • 16 Jarcho M. Calcium phosphate ceramics as hard tissue prosthetics.  Clin Orthoped . 1981;  157 259-278
  • 17 Boyne P J, Marx R E, Nevins M. A feasibility study evaluating rhBMP-2/absorbable collagen sponge for maxillary sinus floor augmentation.  Int J Periodont Restor Dent . 1997;  17 11-25
  • 18 Breitbart A S, Staffenberg D A, Thome C HM. Tricalcium phosphate and osteogenin: a bioactive onlay bone graft substitute.  Plast Reconstr Surg . 1995;  96 699-708
  • 19 Isaksson S, Alberius P, Klinge B. Influence of three alloplastic materials on calvarial bone healing. An experimental evaluation of HTR-polymer, lactomer beads, and a carrier gel.  Int J Oral Maxillofac Surg . 1993;  22 375-381
  • 20 Reddi A H, Muthukumaran N, Ma S. Initiation of bone development by osteogenin and promotion by growth factors.  Connect Tiss Res . 1989;  20 303-312
  • 21 Harvey W K, Pincock J L, Matukas V J. Evaluation of a subcutaneously implanted hydroxyapatite-Avitene mixture in rabbits.  J Oral Maxillofac Surg . 1985;  43 277-280
  • 22 Rawlings C E, Wilkins R H, Hanker J S. Evaluation in cats of a new material for cranioplasty: a composite of plaster of Paris and hydroxyapatite.  J Neurosurg . 1988;  69 269-277
  • 23 Fortunato G, Marini E, Valdinucci F. Long-term results of hydroxyapatite-fibrin glue implantation in plastic and reconstructive surgery.  J Craniomaxillofacial Surg . 1997;  25 124-135
  • 24 Jabs Jr D A, Wider T M, DeBellis J. The effect of fibrin glue on skin grafts in infected sites.  Plast Reconstr Surg . 1992;  89 268-271
  • 25 Marini E, Valdinucci F, Silverstrini G. Morphological investigations on bone formation in hydroxyapatite-fibrin implants in human maxillary and mandibular bone.  Cells Mater . 1994;  4 231-246
  • 26 Pini Prato P G, Cortellini P, Clauser C. Basi biologiche della sintesi tissutale con colla di fibrina umana.  Min Stomatol . 1983;  32 903-914
  • 27 Yamashima T. Reconstruction of surgical skull defects with hydroxyapatite ceramic buttons and granules.  Acta Neurochir . 1988;  90 157-162
  • 28 Salyer K E. Orthomorphic surgery. In: Salyer KE, ed. Aesthetic Craniofacial Surgery Philadelphia: JB Lippincott 1990: 256
  • 29 Byrd H S, Hobar P C, Shewmake K. Augmentation of the craniofacial skeleton with porous hydroxyapatite granules.  Plast Reconstr Surg . 1993;  91 15-22
  • 30 Andriano K P, Daniels A U. Biocompatibility and mechanical properties of a totally absorbable composite material for orthopedic fixation devices.  J Appl Biomat . 1992;  3 197-206
  • 31 Chow L C, Takagi S, Costantino P D. Self setting calcium phosphate cements.  Mater Res Soc Symp Proc . 1991;  179 3-24
  • 32 Friedman C D, Costantino P D, Takagi S. BoneSource hydroxyapatite cement: a novel biomaterial for craniofacial skeletal tissue engineering and reconstruction.  J Biomed Mater Res . 1998;  43 428-432
  • 33 Costantino P D, Friedman C D, Jones K. Hydroxyapatite cement: basic chemistry and histologic properties.  Arch Otolaryngol Head Neck Surg . 1984;  240 115-119
  • 34 Schmitz J P, Hollinger J O, Milam S B. Reconstruction of bone using calcium phosphate bone cements: a critical review.  J Oral Maxillofac Surg . 1999;  57 1122-1126
  • 35 Friedman C D, Costantino P D, Jones K. Hydroxyapatite cement, part II: obliteration and reconstruction of the cat frontal sinus.  Arch Otolaryngol Head Neck Surg . 1991;  117 385-389
  • 36 Shindo M L, Costantino P D, Friedman C D. Facial skeletal augmentation using hydroxyapatite cement.  Arch Otolaryngol Head Neck Surg . 1993;  119 185-190
  • 37 Ross D A, Marentette L J, Thompson B G. Use of hydroxyapatite bone cement to prevent cerebrospinal fluid leakage through the frontal sinus: technical report.  Neurosurgery . 1999;  45 401-403
  • 38 Kveton J F, Friedman C D, Costantino P D. Indications for hydroxyapatite cement reconstruction in lateral skull base surgery.  Am J Otol . 1995;  16 465-469
  • 39 Burstein F D, Cohen S R, Hudgins R. The use of hydroxyapatite cement in secondary craniofacial reconstruction.  Plast Reconstr Surg . 1999;  104 1270-1275
  • 40 Stelnicki E J, Ousterhout D K. Hydroxyapatite paste (BoneSource) used as an onlay implant for supraorbital and malar augmentation.  J Cran Facial Surg . 1997;  8 367-372
  • 41 Constantz B R, Ison I C, Fulmer M T. Skeletal repair by in situ formation of the mineral phase of bone.  Science . 1995;  267 1796-1799
  • 42 Costantino P D, Friedman C D, Lane A. Synthetic biomaterials in facial plastic and reconstructive surgery.  Fac Plast Surg . 1993;  9 1-15
  • 43 Coetzee A S. Regeneration of bone in the presence of calcium sulfate.  Arch Otolaryngol . 1980;  106 405-409
  • 44 Beeson W H. Plaster of Paris as an alloplastic implant in the frontal sinus.  Arch Otolaryngol . 1981;  107 664-669
  • 45 Pecora G E. Short term healing following the use of calcium sulfate as a grafting material for sinus augmentation: a clinical report.  Int J Oral Maxillofacial Implants . 1998;  13 866-873
  • 46 De Leonardis D, Pecora G E. Augmentation of the maxillary sinus with calcium sulfate: one-year clinical report from a prospective longitudinal study.  In J Oral Maxillofac Implants . 1999;  14 869-878
  • 47 Papacharalambous S K, Anastasoff K I. Natural coral skeleton use as onlay graft for contour augmentation of the face.  J Oral Maxillofac Surg . 1993;  22 260-264
  • 48 Roux F X, Brasnu D, Loty B. Madreporic coral: a new bone graft substitute for cranial surgery.  J Neurosurg . 1988;  69 510-513
  • 49 Heimke G. Aluminum oxide. In: Williams D, ed. Concise Encyclopedia of Medical and Dental Materials Oxford: Pergamon 1990: 23-34
  • 50 Plester D, Jahnke K. Ceramic implants in otologic surgery.  Am J Otol . 1981;  3 104-108
  • 51 Skinner H B. Ceramic bearing surfaces.  Clin Orthop . 1999;  369 83-91
  • 52 Cohen M S, Costantino P D, Friedman C D. Biology of implants used in head and neck surgery.  Fac Plast Surg Clin North Am . 1999;  7 17-33
  • 53 Lykins C L, Friedman C D, Ousterhout D K. Polymeric implants in craniomaxillofacial reconstruction.  Otolaryngol Clin North Am . 1994;  27 1015-1033
  • 54 Ousterhout D K. Prosthetic forehead augmentation. In: Ousterhout DK, ed. Aesthetic Contouring of the Craniofacial Skeleton Boston: Little Brown 1991: 199-219
  • 55 Friedman C D, Costantino P D. Alloplastic materials for facial skeletal augmentation.  Fac Plast Surg Clin North Am . 1999;  7 95-103
  • 56 Frodel J L, Lee S. The use of high-density polyethylene implants in facial deformities.  Arch Otolaryngol Head Neck Surg . 1998;  124 1219-1223
  • 57 Romo III T, Sclafani A P, Sabini P. Use of porous high-density polyethylene in revision rhinoplasty and in the platyrrhine nose.  Aesthetic Plast Surg . 1998;  22 211-221
  • 58 Amler M H, LeGeros R Z. Hard tissue replacment (HTR) polymer as an implant material.  J Biomed Mater Res . 1990;  24 1079-1089
  • 59 Szabo G, Suba Z, Barabas J. Use of bioplant HTR synthetic bone to eliminate major jawbone defects: long-term human histological examinations.  J Craniomaxillofac Surg . 1997;  25 63-68
  • 60 Eppley B L, Sadove A M, German R Z. Evaluation of HTR polymer as a craniomaxillofacial graft material.  Plast Reconstr Surg . 1990;  86 1085-1092
  • 61 Morita S, Furuya K, Ishihara K. Performance of adhesive bone cement containging hydroxyapatite particles.  Biomaterials . 1998;  19 1601-1606
  • 62 Thies R S, Bauduy B A, Ashton L. Recombinant human bone morphogenetic protein-2 induces osteoblastic differentiation in W-20-17 stromal cells.  Endocrinology . 1992;  130 1318-1324
  • 63 Hardin C K. Banked bone.  Otolarygol Clin North Am . 1994;  27 911-925
  • 64 Mellonig T J, Prewett A B, Moyer M P. HIV inactivation in a bone allograft.  J Periodontol . 1992;  63 979-983
  • 65 Urist M R, Mikulski A, Boyd S D. A chemosterilized antigen-extracted autodigested alloimplant for bone banks.  Arch Surg . 1975;  110 416-428
  • 66 Hosny M, Sharawy M. Osteoinduction in rhesus monkeys using demineralized bone powder allografts.  J Oral Maxillofac Surg . 1985;  43 837-844
  • 67 Ousterhout D K. Clinical experience in cranial and facial reconstruction with demineralized bone.  Ann Plast Surg . 1985;  15 367-373
  • 68 Neigel J M, Ruzicka P O. Use of demineralized bone implants in orbital and craniofacial reconstruction and a review of the literature.  Ophthalm Plast Reconstr Surg . 1996;  12 108-120
  • 69 Glowacki J, Altobelli D, Mulliken J B. Fate of mineralized and demineralized osseous implants in cranial defects.  Calcif Tissue Int . 1981;  33 71-76
  • 70 Moss S D, Joganic E, Manwaring K H. Transplanted demineralized bone graft in cranial reconstructive surgery.  Pediatr Neurosurg . 1995;  23 199-204
  • 71 Levine S S, Prewett A B, Cook S D. The use of a new form of allograft bone in implantation or osseointegrated dental implants-a preliminary report.  J Oral Implantol . 1992;  18 366-371
  • 72 Ripamonti U. Calvarial reconstruction in baboons with porous hydroxyapatite.  J Craniofac Surg . 1992;  3 149-159
  • 73 Urist M R. Bone formation by autoinduction.  Science . 1965;  150 893
  • 74 Reddi A H. Regulation of cartilage and bone differentiation by bone morphogenetic proteins.  Curr Opin Cell Biol . 1992;  4 850-855
  • 75 Riley E H, Lane J M, Urist M R. Bone morphogenetic protein-2 biology and applications.  Clin Orthoped Rel Res . 1996;  324 39-46
  • 76 Brighton C T, Lorich D G, Kupcha R. The pericyte as a possible osteoblast progenitor cell.  Clin Orthoped . 1992;  275 287-299
  • 77 Amedee J, Barreille R, Rouais E. Osteogenin (bone morphogenetic protein 3) inhibits proliferation and stimulates differentiation of osteoprogenitors in human bone marrow.  Differentiation . 1994;  58 157-164
  • 78 Massague J. TGFβ signaling: receptors, transducers, and Mad proteins.  Cell . 1996;  85 947-950
  • 79 Ducy P, Karsenty G. Two distinct osteoblast-specific cis-acting elements control expression of a mouse osteocalcin gene.  Mol Cell Biol . 1995;  15 1858-1869
  • 80 Ducy P, Zhang R, Geoffroy V. Osf2/Cbfa1: a transcriptional activator of osteoblast differentiation.  Cell . 1997;  89 747-754
  • 81 Geoffroy V, Ducy P, Karsenty G. A PEBP2α/AML-1-related factor increases osteocalcin promoter activity through its binding to a osteoblast-specific cis-acting element.  J Biol Chem . 1995;  270 30973-30979
  • 82 Vukicevic S, Paralkar V M, Cunningham N S. Autoradiographic localizaton of osteogenin binding sites in cartilage and bone during rat embryonic development.  Dev Biol . 1990;  140 209-214
  • 83 Khouri R K, Brown D M, Koudsi B. Repair of calvarial defects with flap tissue: role of bone morphogenetics proteins and competent responding tissues.  Plast Reconstr Surg . 1996;  98 103-109
  • 84 Bostrom M PG, Lane J M, Berberian W S. Immunolocalization and expression of bone morphogenetic proteins 2 and 4 in fracture healing.  J Orthoped Res . 1995;  13 357-367
  • 85 Onishi T, Ishidou Y, Nagamine T. Distinct and overlapping patterns of localization of bone morphogenetic protein (BMP) family members and a bmp type II receptor during fracture healing in rats.  Bone . 1998;  22 605-612
  • 86 Sakou T. Bone morphogenetic proteins: from basic studies to clinical approaches.  Bone . 1998;  22 591-603
  • 87 Kenley R, Marden L, Turek T. Osseous regeneration in the rat calvarium using novel delivery systems for recombinant human bone morphogenetic protein-2 (hBMP-2).  J Biomed Mater Res . 1994;  28 1139-1147
  • 88 Koempel J A, Patt B S, O'Grady K. The effect of recombinant human morphogenetic protein-2 on the integration of porous hydroxyapatite implants with bone.  J Biomed Mater Res . 1998;  41 359-363
  • 89 Hanisch O, Tatakis D N, Rohrer M D. Bone formation and osseointegration in peri-implantitis defects following surgical implantation.  Int J Oral Maxillofac Implants . 1997;  12 604-610
  • 90 Howell T H, Riorellini J, Jones A. A feasibility study evaluating rhBMP-2/absorbable collagen sponge device for local alveolar ridge preservation or augmentation.  Int J Periodont Restor Dent . 1997;  17 124-139
  • 91 Hollinger J O, Leong K. Poly(alpha-hydroxy acids): carriers for bone morphogenetic proteins.  Biomaterials . 1996;  17 187-194
  • 92 Boden S D. Bioactive factors for bone tissue engineering.  Clin Orthoped Rel Res . 1999;  367S S84-S94
  • 93 Tessier P. Autogenous bone graft taken from the calvarium for facial and cranial applications.  Clin Plast Surg . 1982;  9 531
  • 94 Snyder C C. Mandibular lengthening by gradual distraction. Preliminary report.  Plast Reconstr Surg . 1973;  51 506-508
  • 95 Mommaerts M Y. Transpalatal distraction as a method of maxillary expansion.  Br J Oral Maxillofac Surg . 1999;  37 268-272
  • 96 Judge B, Hamlar D, Rimell F L. Mandibular distraction osteogenesis in a neonate.  Arch Otolaryngol Head Neck Surg . 1999;  125 1029-1032
  • 97 Costantino P D, Shybut G, Friedman C D, Pelzer H J, Masini M, Shindo M L, Sisson G A. Segmental mandibular regeneration by distraction osteogenesis. An experimental study.  Arch Otolaryngol Head Neck Surg . 1990;  116 535-545
  • 98 Oda T, Sawaki Y, Fukuta K, Ueda M. Segmental mandibular reconstruction by distraction osteogenesis under skin flaps.  Int J Oral Maxillofac Surg . 1998;  27 9-13
  • 99 Annino D J, Goguen L A, Karmody C S. Distraction osteogenesis for reconstruction of mandibular symphyseal defects.  Arch Otolaryngol Head Neck Surg . 1994;  120 911-916
  • 100 Sawaki Y, Hagino H, Yamamoto H. Trifocal distraction osteogenesis for segmental mandibular defect: a technical innovation.  J of Craniomaxillofacial Surg . 1997;  25 310-315
  • 101 Costantino P D, Johnson C S, Friedman C D, Sisson Sr A G. Bone regeneration within a human segmental mandible defect: a preliminary report.  Am J Otolaryngol . 1995;  16 56-65
  • 102 Simma B, Spehler D, Burger R. Tracheostomy in children.  Eur J Pediatr . 1994;  153 291-296
  • 103 Singer L T, Kercsmar C, Legris G. Developmental sequelae of long-term infant tracheostomy.  Dev Med Child Neurol . 1989;  31 224-230
  • 104 Nunn D R, Derkay C S, Darrow D H. Tracheotomy removal after early mandibular advancement in patients with pediatric craniofacial syndrome.  Otolaryngol Head Neck Surg . 1997;  117 187-191
  • 105 Cohen S R, Simms C, Burstein F D. Mandibular distraction osteogenesis in the treatment of upper airway obstruction in children with craniofacial deformities.  Plast Reconstr Surg . 1998;  101 312-318
  • 106 Winn S R, Randolph G, Uludag H. Establishing an immortalized human osteoprecursor cell line: OPC1.  J Bone Miner Res . 1999;  14 1721-1733
    >