Int J Sports Med 2002; 23(2): 82-85
DOI: 10.1055/s-2002-20134
Physiology and Biochemistry
© Georg Thieme Verlag Stuttgart · New York

Evidence for Exercise-Induced Bone Formation in Premature Infants

D.  Nemet1 , T.  Dolfin1 , I.  Litmanowitz1 , R.  Shainkin-Kestenbaum1 , M.  Lis1 , A.  Eliakim1
  • 1Departments of Pediatrics, and Neonatal Intensive Care Unit, Meir General Hospital, Kfar-Saba, The Sackler School of Medicine, Tel-Aviv University, Israel
Further Information

Publication History

June 25, 2001

Publication Date:
13 February 2002 (online)

Abstract

We assessed the effect of a four weeks exercise training intervention on bone turnover markers in premature infants. Twenty-four very low birth weight premature infants were matched for gestational age, birth weight, gender, as well as for corrected age and weight at initiation of the study. Then the subjects were randomly divided into an exercise (n = 12) and a control group (n = 12). Exercise consisted of passive range of motion exercise with gentle compression of both the upper and lower extremities lasting 5 - 10 minutes each day, 5 days per week for 4 weeks [18]. This protocol has been shown to increase bone mineral density in premature infants. Bone formation was assessed by measurements of circulating bone specific alkaline phosphatase (BSAP) and the C-terminal procollagen peptide (PICP). Bone resorption was determined by serum measurements of C- terminal cross-links telopeptide of type-I collagen (ICTP). Training led to a significant (P < 0.05) increase in weight gain (767 ± 49 versus 586 ± 24 gr in trained and control premature infants, respectively); and to a significant increase in BSAP (37.2 ± 14.6 versus 4.1 ± 8.4 % in trained and control premature infants, respectively). PICP increased also following exercise (34.6 ± 18.9 versus 5.4 ± 9.1 % in trained and control subjects, respectively), however, this increase was not statistically significant. Exercise led to a significant decrease in ICTP (-24.7±3.1 versus -5.5 ± 5.4 % in trained and control subjects, respectively). A relatively brief exercise intervention was associated with a biochemical evidence of bone formation in very low birth weight premature infants.

References

  • 1 Anderson S A, Cohn S H. Bone demineralization during space flight.  Physiologist. 1985;  28 212-217
  • 2 Bowden L S, Jones C J, Ryan S W. Bone mineralization in ex-preterm infants aged 8 years.  Eur J Pediatr. 1999;  158 658-661
  • 3 Callenbach J C, Sheehan M B, Abramson S J, Hall R T. Etiologic factors in rickets of very low birth-weight infants.  J Pediatr. 1981;  98 800-805
  • 4 Committee on nutrition, American academy of pediatrics . Nutritional needs of low-birth weight infants.  Pediatrics. 1985;  75 976-986
  • 5 Delmas P D. Biochemical markers of bone turnover.  Acta Orthop Scand. 1995;  266 76-182
  • 6 Demarini D, Mimouni F B, Tsang R C. Rickets of prematurity. In: Fanaroff AA, Martin RJ (eds) Neonatal-Perinatal Medicine - Diseases of the Fetus and Infant. St. Louis; Mosby 1997: 1473-1476
  • 7 Eliakim A, Brasel J A, Mohan S, Barstow T J, Berman N, Cooper D M. Physical fitness, endurance training, and the GH-IGF-I system in adolescent females.  J Clin Endocrinol Metab. 1996;  81 3986-3992
  • 8 Eliakim A, Raisz L G, Brasel J A, Cooper D M. Evidence for increased bone formation following a brief endurance-type training intervention in adolescent males.  J Bone Miner Res. 1997;  12 1708-1712
  • 9 Eriksen E F, Charles P, Melsen F, Mosekilde L, Risteli L, Risteli J. Serum markers of type I collagen formation and degradation in metabolic bone disease: correlation with bone histomorphometry.  J Bone Mineral Res. 1993;  8 127-132
  • 10 Eyre D R. Biochemical basis of collagen metabolites as bone turnover markers. In: Bilezikian JP, Raisz LG, Rodan GA (eds) Principles of Bone Biology. San Diego, CA, USA; Academic Press 1996 1st ed: 1135-1146
  • 11 Falk B, Eliakim A, Dotan R, Liebermann D G, Regev R, Bar-Or O. Birth weight and physical ability in 5 to 8 yr old healthy children born prematurely.  Med Sci Sport Exer. 1997;  29 1124-1130
  • 12 Forbes G B. Calcium accumulated by the human fetus.  Pediatrics.. 1976;  57 976-977
  • 13 James J R, Condon P J, Truscott J, Horsman A, Arthur R. Osteopenia of prematurity.  Arch Dis Child. 1986;  61 871-876
  • 14 Kent N G. Markers of bone turnover.  J Int Fed Clin Chem. 1997;  9 31-35
  • 15 Leblanc A D, Schneider V S, Evans H J, Engelbretson D A, Krebs J M. Bone mineral loss and recovery after 17 weeks of bed rest.  J Bone Miner Res. 1990;  5 843-850
  • 16 Marcus R. Mechanisms of exercise effects on bone. In: Bilezikian JP, Raisz LG, Rodan GA (eds) Principles of Bone Biology. San Diego, CA, USA; Academic Press 1996 1st ed: 1135-1146
  • 17 Mazess R B, Whedon G D. Immobilization and bone.  Calc Tiss Res. 1983;  35 265-267
  • 18 Moyer-Mileur L, Leutkermeler M, Boomer L, Chan G M. Effect of physical activity on bone mineralization in premature infants.  J Pediatr. 1995;  127 620-625
  • 19 Myburgh K H. Exercise and peak bone mass: An update.  South African J Sport Med. 1998;  5 3-9
  • 20 Naylor K E, Eastell R, Shattuck K E, Alfrey A C, Klein G L. Bone turnover in preterm infants.  Pediatr Res. 1999;  45 363-366
  • 21 Shiff Y, Eliakim A, Shainkin-Kestenbaum R, Arnon S, Lis M, Dolfin T. Measurements of bone turnover markers in premature infants.  J Pediatr Endo Metab. 2001;  14 389-395
  • 22 Slemenda C W, Miller J Z, Hui S L, Reister T K, Johnston C C. Role of physical activity in the development of skeletal mass in children.  J Bone Miner Res. 1991;  6 1227-1233
  • 23 Ziegler E E, O’Donnell A M, Nelson S E, Fomon S J. Body composition of the reference fetus.  Growth. 1976;  40 329-341

M. D. A. Eliakim

Department of Pediatrics · Meir General Hospital

Kfar-Saba · Israel ·

Phone: +972 (9) 7472134

Fax: +972 (9) 7425967

Email: eliakim@internet-zahav.net

    >