Abstract
Preliminary investigations of asymmetric Diels-Alder reactions using a new chiral
auxiliary are presented. The auxiliary is readily prepared from an aldehyde and asparagine
in water. The resulting heterocycle is coupled with acryloyl chloride in the same
pot to provide chiral dienophiles. These are reacted with cyclopentadiene at room
temperature in water or ethanol-water to provide cycloaddition adducts diastereoselectively,
as demonstrated by chiral HPLC of saponification products 5-norbornene-2-carboxylic
acids (47-64% ee for the endo isomers; endo/exo 82:18).
Key words
Diels-Alder reactions - asymmetric synthesis - diastereoselectivity - enantiomeric
resolution - green chemistry
References
<A NAME="RS07201ST-1A">1a </A>
Oppolzer W.
Angew. Chem., Int. Ed. Engl.
1984,
23:
876
<A NAME="RS07201ST-1B">1b </A>
Oh T.
Reilly M.
Org. Prep. Proc. Int.
1994,
26:
129
<A NAME="RS07201ST-1C">1c </A>
Kagan HB.
Riant O.
Chem. Rev.
1992,
92:
1007
<A NAME="RS07201ST-2A">2a </A>
Studer A.
Synthesis
1996,
793
<A NAME="RS07201ST-2B">2b </A>
Kunz H.
Ruck-Braun K.
Chiral Auxiliaries in Cycloadditions
Wiley;
New York:
1999.
<A NAME="RS07201ST-2C">2c </A>
Seyden-Penne J.
Chiral Auxiliaries and Ligands in Asymmetric Synthesis
Wiley;
New York:
1995.
<A NAME="RS07201ST-3A">3a </A>
Juaristi E.
Quintana D.
Balderas M.
Garcia-Perez E.
Tetrahedron: Asymmetry
1996,
7:
2233
<A NAME="RS07201ST-3B">3b </A>
Chu KS.
Negrete GR.
Konopelski JP.
Lakner FJ.
Woo N.-T.
Olmstead MM.
J. Am. Chem. Soc.
1992,
114:
1800
<A NAME="RS07201ST-4">4 </A>
Lakner FJ.
Chu KS.
Negrete GR.
Konopelski JP.
Org. Synth.
1996,
73:
201
<A NAME="RS07201ST-5">5 </A>
(R ,R )-Whelk-O 1 column, 5% isopropanol-hexane, 1.0 mL/min, 280 nm detection. Endo enantiomers
were each baseline separated, but exo enantiomers were not.
<A NAME="RS07201ST-6A">6a </A>
Poll T.
Helmchen G.
Bauer B.
Tetrahedron Lett.
1984,
21:
2191
<A NAME="RS07201ST-6B">6b </A>
Waldmann H.
Dräger M.
Tetrahedron Lett.
1989,
30:
4227
<A NAME="RS07201ST-7A">7a </A>
Bueno MP.
Cativiela CA.
Mayoral JA.
Avenoza A.
J. Org. Chem.
1991,
56:
6551
<A NAME="RS07201ST-7B">7b </A>
Waldmann H.
Synlett
1995,
133
<A NAME="RS07201ST-8A">8a </A>
Meijer A.
Otto S.
Engberts JBFN.
J. Org. Chem.
1998,
63:
8989
<A NAME="RS07201ST-8B">8b </A>
Rideout DC.
Breslow R.
J. Am. Chem. Soc.
1980,
102:
7817
<A NAME="RS07201ST-8C">8c </A>
Breslow R.
Maitra U.
Rideout D.
Tetrahedron Lett.
1983,
24:
1901
<A NAME="RS07201ST-9">9 </A>
Kinetic experiments were conducted using 80 µM dienophile 1c and 30 equiv cyclopentadiene at 23 °C with vigorous stirring. Disappearance of 1c was followed by reverse phase HPLC. Each reaction obeyed linear pseudo first-order
kinetics in the disappearance of 1c for at least the first 50% of conversion.
<A NAME="RS07201ST-10">10 </A>
While it should be possible to reclaim the asparagine which remains in the aqueous
solution, its low cost and toxicity is not likely to pose problems for disposal.
<A NAME="RS07201ST-11">11 </A>
Amide rotamer populations for 1a and 1b were easily determined to be 2:1 and 1:1 respectively (1 H NMR in D2 O at room temperature). A complete analysis of configurational considerations shall
be forthcoming.