Subscribe to RSS
DOI: 10.1055/s-2002-25187
Einschränkung der Ventilationsparameter und Belastbarkeit durch pulmonale Hypertonie bei chronischer Herzinsuffizienz
Impairment of ventilatory parameters and exercise capacity in patients with chronic heart failure and pulmonary hypertensionPublication History
26.7.2001
11.12.2001
Publication Date:
18 April 2002 (online)

Hintergrund und Fragestellung: Eine sekundäre pulmonale Hypertonie bei Patienten mit chronischer Herzinsuffizienz ist häufig. In dieser Studie wurde untersucht, ob eine pulmonale Hypertonie zu Veränderungen der Ventilationsparameter und der Belastbarkeit bei chronischer Herzinsuffizienz führt.
Patienten und Methodik: 21 Patienten (sechs Frauen, 15 Männer, mittleres Alter 55 ± 10 Jahre) mit chronischer Herzinsuffizienz und einer linksventrikulären Ejektionsfraktion von 25 % ± 5 % wurden mittels Rechtsherzkatheter, Bodyplethysmographie einschließlich Kohlenmonoxid-Transfer und Spiroergometrie untersucht. Sieben Patienten hatten eine ischämische, die übrigen 14 eine dilatative Kardiomyopathie. Eine pulmonale Hypertonie (Pulmonalarterien-Mitteldruck > 25 mmHg) lag bei zehn Patienten vor.
Ergebnisse: Bei den Patienten mit pulmonaler Hypertonie zeigten sich eine deutlich geringere Vitalkapazität (75 % ± 20 % der Norm vs. 93 % ± 14 % der Norm, p < 0,001), eine geringere Einsekundenkapazität (FEV1 68 % ± 21 % der Norm vs. 91 % ± 15 % der Norm, p < 0,001) sowie eine verminderte Diffusionskapazität (58 % ± 21 % vs. 77 % ± 21 %, p < 0,001) als bei Patienten ohne pulmonale Hypertonie. Der mittlere exspiratorische Fluss bei 25 % und 75 % der Exspirationszeit war bei pulmonaler Hypertonie niedriger (30 % ± 13 % vs. 50 % ± 29 % und 62 % ± 25 % vs. 81 % ± 20 %, je p < 0,05). Bei pulmonaler Hypertonie fanden sich in der Flussvolumenkurve Zeichen einer „small airway disease”. Spiroergometrisch zeigten sich bei Patienten mit pulmonaler Hypertonie sowohl eine niedrigere maximale Sauerstoff-Aufnahme (12,5 ± 2,1 vs. 15,2 ± 4,1 ml/min/kg, p < 0,05) als auch eine niedrigere Sauerstoff-Aufnahme an der anaeroben Schwelle (9,7 ± 1,6 vs. 12,0 ± 3,0 ml/min/kg, p < 0,05), eine niedrigere Atemreserve (39 % ± 22 % vs. 51 % ± 21 %, p < 0,05) und ein höheres Kohlendioxid-Atemäquivalent (EqCO2 38 ± 9 vs. 31 ± 3, p < 0,05).
Folgerung: Bei chronischer Herzinsuffizienz führt eine sekundäre pulmonale Hypertonie zu einer schlechteren Belastbarkeit sowie reduzierten Ventilationsparametern. Lungenfunktionell zeigt sich hierbei eine Obstruktion, eine „small airway disease” und eine ineffizientere Atmung.
Background and objective: Chronic heart failure often coincides with secondary pulmonary hypertension. In this study the influence of pulmonary hypertension on exercise capacity and ventilatory parameters in patients with chronic heart failure was examined.
Patients and methods: 21 patients with chronic heart failure (six women, 15 men, mean age 55 ± 10 years) and a left ventricular ejection fraction of 25 % ± 5 % were studied by right heart catheterization, bodyplethysmography including carbonmonoxide diffusion testing and spiroergometry. Seven patients suffered from ischemic and 14 patients from dilative cardiomyopathy. Pulmonary hypertension (defined as pulmonary artery mean pressure > 25 mmHg) was found in ten patients.
Results: Patients with pulmonary hypertension showed a reduced vital capacity (75 % ± 20 % of normal values vs. 93 % ± 14 % of normal values, p < 0.001), a lower forced expiratory volume in one second (FEV1 68 % ± 21 % of normal values vs. 91 % ± 15 % of normal values, p < 0.001), and a reduced carbonmonoxide-diffusing capacity (58 % ± 21 % vs. 77 % ± 21 %, p < 0.001) compared to patients without pulmonary hypertension. Mean expiratory flow at 25 % and 75 % of the exspiration time was lower in patients with pulmonary hypertension (30 % ± 13 % vs. 50 % ± 29 % and 62 % ± 25 % vs. 81 % ± 20 %, each p < 0.05). In patients with pulmonary hypertension, the flow-volume diagram characteristically showed signs of „small airway disease”. Spiroergometry revealed a significantly lower maximum oxygen-uptake (12.5 ± 2.1 vs. 15.2 ± 4.1 ml/min/kg, p < 0.05), oxygen-uptake at the anaerobic threshold (9.7 ± 1.6 vs. 12.0 ± 3.0 ml/min/kg, p < 0.05), carbon dioxide ventilatory efficiency (EqCO2 38 ± 9 vs. 31 ± 3, p < 0.05) and ventilatory reserve (39 % ± 22 % vs 51 % ± 21 %, p < 0.05) in patients with pulmonary hypertension.
Conclusion: In patients with chronic heart failure the presence of pulmonary hypertension leads to a reduction of exercise capacity and impaired ventilatory parameters. Lung functional testing reveals bronchial obstruction, „small airway disease” and a reduced ventilatory efficiency.
Literatur
- 1
Butler J, Chomsky D B, Wilson J R.
Pulmonary hypertension and exercise intolerance in patients
with heart failure.
J Am Coll
Cardiol.
1999;
34
1802-1806
MissingFormLabel
- 2
Cabanes L, Costes F, Weber S. et al .
Improvement in exercise performance by inhalation of
methoxamine in patients with impaired left ventricular ejection
fraction.
N Engl J
Med.
1992;
326
1661-1665
MissingFormLabel
- 3
Di
Salvo T G, Mathier M, Semigran M J, Dec G W.
Preserved right ventricular ejection fraction predicts
exercise capacity and survival in advanced heart failure.
J Am Coll
Cardiol.
1995;
25
1143-1153
MissingFormLabel
- 4
Engström G, Wollmer P, Hedblad B, Juul-Möller S, Valind S, Janzon L.
Occurence and prognostic significance of ventricular
arrhythmia is related to pulmonary
function.
Circulation.
2001;
103
3086-3091
MissingFormLabel
- 5
Hambrecht R, Adams V, Gielen S. et al .
Exercise intolerance in patients with chronic heart failure
and increased expression of inducible nitric oxide synthase in the skeletal
muscle.
J Am Coll
Cardiol.
1999;
33
174-179
MissingFormLabel
- 6
Harrington D, Anker S D, Chua T P. et al .
Skeletal muscle function and its relation to exercise
tolerance in chronic heart failure.
J Am Coll
Cardiol.
1997;
30
1758-1764
MissingFormLabel
- 7
James D L, Pare P D, Hogg J C.
The mechanisms of airway narrowing in asthma.
Am
Rev Respir
Dis.
1989;
139
242-246
MissingFormLabel
- 8
Kindman L A, Vagelos R H, Willson K, Prikazky L, Fowler M.
Abnormalities of pulmonary function in patients with
congestive heart failure, and reversal with ipratropium bromide.
Am J
Cardiol.
1994;
73
258-262
MissingFormLabel
- 9
Kraemer M D, Kubo S H, Rector T S, Brunsvold N, Bank A J.
Pulmonary and peripheral vascular factors are important
determinants of peak exercise oxygen uptake in patients with heart
failure.
J Am Coll
Cardiol.
1993;
21
641-648
MissingFormLabel
- 10
Mancini D M, Eisen H, Kussmaul W, Mull R, Edmunds L H, Wilson J R.
Value of peak exercise oxygen consumption for optimal timing
of cardiac transplantation in ambulatory patients with heart
failure.
Circulation.
1991;
83
778-786
MissingFormLabel
- 11
Mancini D M, Ferraro N, Nazzaro D, Chance B, Wilson J R.
Respiratory muscle deoxygenation during exercise in patients
with heart failure demonstrated with near-infrared spectroscopy.
J Am
Coll
Cardiol.
1991;
18
492-498
MissingFormLabel
- 12
Mancini D M.
Pulmonary factors limiting exercise capacity in patients with
heart failure.
Prog Cardiovasc
Dis.
1995;
38
347-370
MissingFormLabel
- 13
Meiler S EL, Ashton J J, Moeschberger M L, Unverth D V, Leier C V.
An analysis of the determinants of exercise performance in
congestive heart failure.
Am Heart
J.
1987;
113
1207-1217
MissingFormLabel
- 14
Meyer F J, Borst M M, Zugck C. et al .
Respiratory muscle dysfunction in congestive heart failure:
clinical correlation and prognostic
significance.
Circulation.
2001;
103
2153-2158
MissingFormLabel
- 15
Myers J, Froelicher V F.
Hemodynamic determinants of exercise capacity and indexes of
resting left ventricular performance in heart failure.
Ann Intern
Med.
1991;
115
377-386
MissingFormLabel
- 16
Naveri H K, Leinonen H, Kiilavuori K, Harkonen M.
Skeletal muscle lactate accumulation and creatine phosphate
depletion during heavy exercise in congestive heart failure. Cause of limited
exercise capacity?.
Eur Heart
J.
1997;
18
1937-1945
MissingFormLabel
- 17
Okita K, Yonezawa K, Nishijima H. et al .
Skeletal muscle metabolism limits exercise capacity in
patients with chronic heart
failure.
Circulation.
1998;
98
1886-1891
MissingFormLabel
- 18
Porter T R, Taylor D O, Cycan A. et al .
Endothelium-dependent pulmonary artery responses in chronic
heart failure: influence of pulmonary hypertension.
J Am Coll
Cardiol.
1993;
22
1418-1424
MissingFormLabel
- 19
Puri S, Baker B L, Dutka D P, Oakley C M, Hughes J M, Cleland J G.
Reduced alveolar-capillary membrane diffusing capacity in
chronic heart failure: Its pathophysiological relevance and relationship to
exercise
performance.
Circulation.
1995;
91
2769-2774
MissingFormLabel
- 20
Reindl I, Wernecke K D, Opitz C. et al .
Impaired ventilatory efficiency in chronic heart failure:
possible role of pulmonary vasoconstriction.
Am Heart
J.
1998;
136
778-785
MissingFormLabel
- 21
Sullivan M J, Green H J, Cobb F R.
Altered skeletal muscle metabolic response to exercise in
chronic heart failure: relation to skeletal muscle aerobic enzyme
activity.
Circulation.
1991;
84
1597-1607
MissingFormLabel
- 22
Sullivan M J, Higginbotham M B, Cobb F R.
Increased exercise ventilation in patients with chronic heart
failure: intact ventilatory control despite hemodynamic and pulmonary
abnormalities.
Circulation.
1988;
77
552-559
MissingFormLabel
- 23
Toussaint J F, Koelling T M, Schmidt C J, Kwong K K, LaRaia P J, Kantor H L.
Local relation between oxidative metabolism and perfusion in
leg muscles of patients with heart failure studied by magnetic resonance
imaging and spectroscopy.
J Heart Lung
Transplant.
1998;
17
892-900
MissingFormLabel
- 24
Uren N G, Davies S W, Jordan S L, Lipkin D P.
Inhaled bronchodilators increase maximum oxygen consumption
in chronic left ventricular failure.
Eur Heart
J.
1993;
14
744-750
MissingFormLabel
- 25
Wassermann K, Beaver W L, Whipp B J.
Gas exchange theory and lactic acidosis (anaerobic)
threshold.
Circulation.
1990;
81
(Suppl
II)
II 14-II 30
MissingFormLabel
- 26 Wassermann K, Hansen J E, Sue D Y, Whipp B J, editors. Principles of exercise testing and
interpretation. 1st ed. Philadelphia: Lea &
Febiger 1987: 72-97
MissingFormLabel
- 27
Wassermann K.
Determinants and detection of anaerobic threshold and
consequences of exercise about
it.
Circulation.
1987;
76
VI
29-VI 39
MissingFormLabel
- 28
Weber K, Kinasewitz G, Janicki J, Fishman A.
Oxygen utilization and ventilation during exercise in
patients with chronic cardiac
failure.
Circulation.
1982;
65
1213-1223
MissingFormLabel
- 29
Wilson J R, Martin J L, Schwartz D, Ferraro N.
Exercise intolerance in patients with chronic heart failure:
role of impaired nutritive flow to skeletal
muscle.
Circulation.
1984;
69
1079-1087
MissingFormLabel
Dr. med. Stefan Krüger
Medizinische Klinik I
Universitätsklinikum
RWTH
Pauwelsstraße 30
52057 Aachen
Phone: 0241/8089722
Fax: 0241/8888414
Email: skru@post.klinikum.rwth-aachen.de