Horm Metab Res 2002; 34(5): 234-237
DOI: 10.1055/s-2002-32135
Original Basic
© Georg Thieme Verlag Stuttgart · New York

Increased Rate of Cholesterologenesis - A Possible Cause of Hypercholesterolemia in Experimental Chronic Renal Failure in Rats

M.  Szolkiewicz 1 , E.  Sucajtys 1 , M.  Chmielewski 1 , W.  Wolyniec 1 , P.  Rutkowski 1 , W.  Boguslawski 2 , J.  Swierczynski 3 , B.  Rutkowski 1
  • 1Department of Nephrology, Medical University of Gdansk, Poland
  • 2Department of Chemistry, Medical University of Gdansk, Poland
  • 3Department of Biochemistry, Medical University of Gdansk, Poland
Further Information

Publication History

6 December 2001

13 February 2002

Publication Date:
10 June 2002 (online)

Abstract

Hypercholesterolemia plays an important role in the lipid abnormalities in chronic renal failure (CRF). It is thought to contribute to both a progression of renal failure and atherosclerosis. Despite intensive research, the etiopathogenesis of hypercholesterolemia in CRF patients is still obscure. The present study was designed to evaluate the possible role of cholesterol overproduction in the development of hypercholesterolemia associated with experimental CRF.

We found that plasma total cholesterol and cholesterol distributed in VLDL, LDL and HDL concentrations were significantly enhanced in CRF rats. Simultaneously, the rate of liver cholesterol biosynthesis in vivo (measured by determining the incorporation of tritium from tritiated water intraperitoneally injected into cholesterol), liver microsomal 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase activity and liver HMG-CoA reductase mRNA presence were elevated. Significant increases in activity of liver malic enzyme, glucose 6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase, NADPH-producing enzyme (required for cholesterol synthesis) have also been observed in CRF rats.

In conclusion, the increased rate of liver cholesterol biosynthesis due to increase of HMG-CoA reductase and NADPH-producing enzyme gene expression could be one of the possible causes of hypercholesterolemia in CRF animals.

References

  • 1 Krol E, Rutkowski B, Wroblewska M, Badzio T. Classification of lipid disorders in chronic hemodialysed patients.  Miner Electrolyte Metab. 1996;  22 13-15
  • 2 Lindner A L, Chara B, Sherrard D J, Scribner B H. Accelerated atherosclerosis in prolonged maintenance hemodialysis.  N Engl J Med. 1974;  290 697-701
  • 3 Keane W F, Kasiske B L, O’Donnel M P. Lipids and progressive glomerulosclerosis. A model analogous to atherosclerosis.  Am J Nephrol. 1988;  8 261-271
  • 4 Pandak W M, Vlahcevic Z R, Heuman D M, Krieg R J, Hanna J D, Chan J CM. Post-transcriptional regulation of 3-hydroxy-3-methylglutaryl coenzyme A reductase and cholesterol 7-hydroxylase in rats with subtotal nephrectomy.  Kidney Int. 1994;  46 358-364
  • 5 Liang K, Vaziri N D. Gene expression of LDL receptor, HMG-CoA reductase and cholesterol-7 alpha-hydroxylase in chronic renal failure.  Nephrol Dial Transplant. 1997;  12 1381-1386
  • 6 Heuck C C, Liersch M, Ritz E, Stegmeier K, Wirth A, Mehls O. Hyperlipoproteinemia in experimental chronic renal insufficiency in the rat.  Kidney Int. 1978;  14 142-150
  • 7 Mak R HK, de Fronzo R A. Glucose and insulin metabolism in uremia.  Nephron. 1992;  61 377-382
  • 8 Parker R A, Miller S J, Gibson D M. Phosphorylation state of HMG CoA reductase affects its catalytic activity and degradation.  Adv Enzyme Regul. 1986;  25 329-343
  • 9 Swierczynski J, Korczynska J, Szolkiewicz M, Karbowska J, Kochan Z, Nieweglowski T, Kusiak E, Rutkowski B. Low leptin mRNA level in adipose tissue and normoleptinemia in experimental chronic renal failure.  Exp Nephrol. 2001;  9 54-59
  • 10 Kochan Z, Karbowska J, Swierczynski J. Unusual increase of lipogenesis in rat white adipose tissue after multiple cycles of starvation-refeeding.  Metabolism. 1997;  46 10-17
  • 11 Glock G E, Mc Lean P. Further studies on properties and assay of glucose 6-phosphate and 6-phosphogluconate dehydrogenase in rat liver.  Biochem J. 1953;  55 400-408
  • 12 Zelewski M, Swierczynski J. The effect of clofibrate feeding on the NADP-linked dehydrogenases activity in rat tissue.  Biochim Biophys Acta. 1983;  758 152-157
  • 13 Petersen G L. A simplification of the protein assay method of Lowry et al. which is more generally applicable.  Anal Biochem. 1977;  83 347-356
  • 14 Shapiro D J, Nordstrom J L, Mitschelen J J, Rodwell V W, Schimke R T. Micro assay for 3-hydroxy-3-methylglutaryl-CoA reductase in rat liver and in L-cell fibroblasts.  Biochim Biophys Acta. 1974;  370 369-377
  • 15 Karbowska J, Kochan Z, Zelewski L, Swierczynski J. Tissue-specific effect of clofibrate on rat lipogenic enzyme gene expression.  Eur J Pharmacol. 1999;  370 329-336
  • 16 Sperry W H, Webb M. A revision of the Schoenheimer-Sperry method for cholesterol determination.  J Biol Chem. 1950;  187 97-106
  • 17 Chmielewski M, Nieweglowski T, Swierczynski J, Rutkowski B, Boguslawski W. Diurnal rhythm of cholesterol biosynthesis in experimental chronic renal failure.  Moll Cell Biochem. 2001;  228 33-37
  • 18 Girard J, Ferre O, Foufefelle F. Mechnisms by which carbohydrate regulate expression of genes for glycolytic and lipogenic enzymes.  Annu Rev Nutr. 1997;  17 325-352
  • 19 Hasty A H, Shimano H, Osuga J i, Namatame I, Takahashi A, Yahagi N, Perrey S, Iizuka Y, Tamura Yamemiya-Kudo M, Yoshikava T, Okazaki H, Ohashi K, Harada K, Matszaka T, Sone H, Gotoda T, Nagi R, Ishibashi S, Yamada N. Severe hypercholesterolemia, hypertriglyceridemia and atherosclerosis in mice lacking both leptin and low density lipoprotein receptors.  J Biol Chem. 2001;  276 37 402-37 408

M. Szolkiewicz, M.D., Ph.D.

Department of Nephrology · Medical University of Gdansk

ul.Debinki 7 · 80-211 Gdansk-Wrzeszcz · Poland ·

Phone: + 48 (58) 346 11 86

Fax: + 48 (58) 346 11 86 ·

Email: Bolo@amedec.amg.gda.pl

    >