Int J Sports Med 2002; 23(5): 374-379
DOI: 10.1055/s-2002-33148
Training and Testing
© Georg Thieme Verlag Stuttgart · New York

Effect of 4-min Vertical Whole Body Vibration on Muscle Performance and Body Balance: A Randomized Cross-over Study

S.  Torvinen1, 2 , H.  Sievänen1 , T.  A.  H.  Järvinen2 , M.  Pasanen1 , S.  Kontulainen1 , P.  Kannus1, 2
  • 1Bone Research Group, UKK Institute, Tampere, Finland
  • 2Department of Surgery, Medical School and Institute of Medical Technology, University of Tampere,and Tampere University Hospital, Tampere, Finland
Further Information

Publication History

Accepted after revision: 9. November 2001

Publication Date:
16 August 2002 (online)


The purpose of this randomized cross-over study was to investigate the effects of a 4-min long, 2-mm vertically-vibrating vibration-exercise on muscle performance and body balance in healthy subjects. Sixteen volunteers (eight men and women aged 18-35 years) underwent both the 4-min vibration- and sham-interventions in a randomized order on different days. Performance- and balance-tests (stability platform, grip strength, extension strength of lower extremities, tandem-walk, vertical jump and shuttle-run) were done 10 minutes before (baseline) and 2 and 60 minutes after the intervention. In addition, the effect of vibration on the surface electromyography (EMG) of soleus, vastus lateralis, gluteus medius, and paravertebralis muscles was investigated during the vibration. The 4-min vibration-loading did not induce any statistically significant change in the performance- or balance-tests at the 2- or 60-min tests. Interestingly, however, the mean power frequency of the EMG in the vastus lateralis and gluteus medius muscles decreased during the vibration-intervention, indicating muscle fatigue, particularly in the hip region. It was concluded that a 4-min long, 2-mm vertically-vibrating vibration-stimulus did not induce changes in the performance and balance tests. Future studies should focus on evaluating the effects of different kinds of vibration-regimens, as well as the long-term effects of vibration-training, on body balance and muscle performance, and, as a broader objective, on bone.


  • 1 Baker J, Ramsbottom R, Hazeldine R. Maximal shuttle running over 40 m as a measure of anaerobic performance.  Br J Sports Med. 1993;  27 228-232
  • 2 Bongiovanni L, Hagbarth K, Stjernberg L. Prolonged muscle vibration reducing motor output in maximal voluntary contractions in man.  J Physiol. 1990;  423 15-26
  • 3 Bosco C, Cardinale M, Tsarple O. Influence of vibration on mechanical power and electromyogram activity in human arm flexor muscles.  Eur J Appl Physiol. 1999;  79 306-311
  • 4 Bosco C, Colli R, Introini E, Cardinale M, Tsarpela O, Madella A, Tihanyi J, Viru A. Adaptive responses of human skeletal muscle to vibration exposure.  Clin Physiol. 1999;  19 183-187
  • 5 de Gail P, Lance J W, Neilson P D. Differential effects on tonic and phasic reflex mechanisms produced by vibration of muscles in man.  J Neurol Neurosurg Psych. 1966;  29 1-11
  • 6 Dowling J J. The use of electromyography for the noninvasive prediction of muscle forces.  Sports Med. 1997;  24 82-96
  • 7 Eklund G. Position sense and state of contraction; the effects of vibration.  J Neurol Neurosurg Psych. 1972;  35 606-611
  • 8 Falempin M, In-Albon S F. Influence of brief daily tendon vibration on rat soleus muscle in non-weight-bearing situation.  J Appl Physiol. 1999;  87 3-9
  • 9 Hagbarth K, Eklund G. Motor effects of vibratory stimuli. In: Granit R (ed) Muscular Afferents and Motor Control. Proceedings of First Symposium. Stockholm; Almqvist and Wiksell 1965
  • 10 Hagbarth K E. The effect of muscle vibration in normal man and in patients with motor disease. In: Desmedt JE (ed) New Developments in Electromyography and Clinical Neurophysiology. Basel; Karger 1973: 428-443
  • 11 Heinonen A, Sievänen H, Viitasalo J, Pasanen M, Oja P, Vuori I. Reproducibility of computer measurement of maximal isometric strength and electromyography in sedentary middle-aged women.  Eur J Appl Physiol. 1994;  68 310-314
  • 12 Jurell K. Surface EMG and fatigue.  Phys Med Rehab Clin North Am. 1998;  9 933-947
  • 13 Martin B J, Park H S. Analysis of the tonic vibration reflex: influence of vibration variables on motor unit synchronization and fatigue.  J Appl Physiol. 1997;  75 504-511
  • 14 Nelson M E, Fiatarone M A, Morganti C M, Trice I, Greenberg W JM. Effects of high-intensity strength training on multiple risk factors for osteoporotic fractures.  JAMA. 1994;  28 1909-1914
  • 15 Petrofsky J S, Glaser R M, Phillips C A. Evaluation of the amplitude and frequency components of the surface EMG as an index of muscle fatigue.  Ergonomics. 1982;  25 213-223
  • 16 Rittweger J, Beller G, Felsenberg D. Acute physiological effects of exhaustive whole-body vibration exercise in man.  Clin Physiol. 2000;  20 134-142
  • 17 Runge M, Rehfeld G, Resnicek E. Balance training and exercise in geriatric patients.  J Musculoskel Neuron Interact. 2000;  1 61-65
  • 18 Schmitz R, Arnold B. Intertester and intratester reliability of a dynamic balance protocol using the Biodex Stability System.  J Sport Rehabil. 1998;  7 95-101
  • 19 Sandercock T, Faulkner J, Albers J, Abbrecht P. Single motor unit and fiber action potentials during fatigue.  J Appl Physiol. 1985;  58 1073-1079
  • 20 Seidel H. Myoelectrical reactions to ultra-low frequency and low-frequency whole body vibration.  Eur J Appl Physiol. 1988;  57 558-562
  • 21 Sillanpää J, Sievänen H, Heinonen A, Mänttäri A, Viitasalo J. Reproducibility of a novel measurement and analytic method for jump testing. In: Häkkinen K, Keskinen KL, Komi PV, Mero A (eds) A. Book of abstracts, XVth Congress of the International Society of Biomechanics. Jyväskylä, Finland; Gummerus Printing 1995: 850-851
  • 22 Viitasalo J T, Komi P V. Signal characteristics of EMG during fatigue.  Eur J Appl Physiol. 1977;  37 111-121

Dr. S. Torvinen, M.D.

UKK Institute

Kaupinpuistonkatu 1 · 33500 Tampere, Finland ·

Phone: 011-358-3-2829 246

Fax: 011-358-3-2829 200