Anästhesiol Intensivmed Notfallmed Schmerzther 2002; 37(8): 441-460
DOI: 10.1055/s-2002-33168
Aktuelle Medizin und Forschung
© Georg Thieme Verlag Stuttgart · New York

Phylogenese des Stoffwechsels der Säugetiere

Phylogeny of Mammalian MetabolismD.  Singer
  • 1Universitäts-Kinderklinik Würzburg
Diese Arbeit ist meinem langjährigen Mentor in Fragen der vergleichenden Säugetierkunde, Herrn Prof. Dr.med. Hans-Jürg Kuhn, Anatomisches Institut der Universität und Deutsches Primatenzentrum Göttingen, in Dankbarkeit gewidmet.
Further Information

Publication History

Publication Date:
07 August 2002 (online)

Zusammenfassung

Die Säugetiere stehen am Ende eines metabolischen Evolutionsprozesses, innerhalb dessen mit dem Schritt vom anaeroben zum aeroben Zellstoffwechsel und dem Übergang der Wirbeltiere vom Wasser- zum Landleben die Grundlagen für eine Steigerung des Energieumsatzes (vom Brady- zum Tachymetabolismus) geschaffen wurden. Die gesteigerte Stoffwechselrate und die damit verbundene endogene Wärmeproduktion bilden die Voraussetzungen für eine erhöhte aerobe Dauerleistungsfähigkeit und für die Homöothermie, die den Säugetieren und Vögeln die Besiedelung gemäßigter Klimazonen ermöglicht hat. Die zugrundeliegende Zunahme der Membranpermeabilität bedingt aber auch einen gesteigerten Energiebedarf (für die Membranpumpenaktivität), der für die verminderte Hypoxietoleranz von Säugetieren verantwortlich ist und eine permanente Substratzufuhr voraussetzt. In Anpassung an eine saisonale Diskrepanz zwischen erhöhtem thermoregulatorischem Energiebedarf und vermindertem Nahrungsangebot hat sich daher bei einigen Kleinsäugern - offenbar aus der „Eintrittspforte” des bei den Warmblütern neu aufgetretenen Non-REM-Schlafes heraus - der Winterschlaf entwickelt. Der Winterschlaf der Säugetiere ist durch eine ausgeprägte Umsatzreduktion gekennzeichnet, die durch eine Azidose moduliert und durch die erhaltene Thermoregulation auf ein verträgliches Maß begrenzt wird. Die Untergrenze der Abkühlung ist dabei offenbar durch einen kritischen Minimalumsatz vorgegeben, der allen Säugetieren gemeinsam ist und bei um so tieferen Körpertemperaturen erreicht wird, je höher der normotherme Energieumsatz ist. Da der spezifische (d. h. auf das Körpergewicht bezogene) Grundumsatz mit abnehmender Körpergröße zunimmt, weisen kleinere Säuger eine höhere Hypothermietoleranz auf als größere. Andererseits bedeutet der Abfall auf ein einheitliches Minimalniveau eine Inaktivierung der üblichen Körpergrößenbeziehung des Energieumsatzes und bildet so das Gegenstück zu dem nach der Geburt erfolgenden Anstieg der Stoffwechselrate von einem niedrigen fetomaternalen auf das der Körpergröße entsprechende höhere Niveau. Dieser postnatale Energieumsatzanstieg, der die einsetzende Thermoregulation erleichtert, verläuft dem zunehmenden Sauerstoffpartialdruck am Übergang vom fetalen zum adulten Kreislauf parallel und liegt damit möglicherweise auch der bei neugeborenen Säugetieren zu beobachtenden Fähigkeit zur Absenkung des Energiebedarfes bei Sauerstoffmangel zugrunde. Es mehren sich Hinweise darauf, dass, wie schon beim Schritt von der Anaerobiose zu Aerobiose, die Steigerung des Stoffwechselrate mit jeder Zunahme des Sauerstoffangebotes ein generelles Prinzip der Evolution darstellt, um - abgesehen von den daraus resultierenden Selektionsvorteilen - die Gewebe vor Sauerstoffüberangebot und oxidativem Stress zu schützen.

Abstract

Mammals are at the end of a gradual metabolic evolution in the course of which the step from anaerobic to aerobic cellular metabolism and the transition from water to land life formed the basis for an increase in metabolic rate (from brady- to tachymetabolism). The increased metabolic rate and the resulting endogenous heat production were the preconditions for enhanced long-term performance as well as for homeothermy which allowed mammals and birds to invade temperate zones. However, the underlying increase in membrane permeability also results in an increased energy demand (for membrane pump activity) which leads to the reduced hypoxia tolerance of mammals and requires a permanent substrate supply. As an adaptation to a seasonal discrepancy between increased thermoregulatory energy demand and decreased food supply, some small mammals apparently extended the newly evolved non-REM-sleep into hibernation. Mammalian hibernation is characterized by a profound metabolic reduction which is influenced by acidosis and limited to a tolerable degree by maintained thermoregulation. The lower limit of cooling seems to be determined by a critical minimal metabolic rate which is common to all mammals. The higher the normothermic metabolic rate, the lower is the temperature at which this minimal metabolic rate is reached. Since specific (i. e., weight-corrected) basal metabolic rate increases with decreasing body mass, small mammals exhibit a higher hypothermia tolerance than larger ones. On the other hand, the metabolic decrease to a uniform minimal level reflects an inactivation of the overall metabolic size relationship and, thus, forms a counterpart to the metabolic increase from a lower fetomaternal to the higher size-related level, occurring after birth. The postnatal metabolic increase which favours the onset of thermoregulation, parallels the increase in oxygen tension at the transition from fetal to adult circulation and, thus, probably enables mammalian neonates to readjust their metabolic needs in response to hypoxia. There is increasing evidence that, similar to the step from anaerobiosis to aerobiosis, the increase in metabolic rate resulting from any increase in oxygen supply is a general principle of evolution that, apart from its further adaptive benefits, protects tissues from oxygen excess and subsequent oxidative stress.








Literatur

  • 1 Hoffman E K. Cell volume regulation in mammalian cells. In: Gilles R (ed) Animals and environmental fitness: Physiological and biochemical aspects of adaptation and ecology. Vol. 1. Oxford; Pergamon 1980: 43-59
  • 2 Brendel W, Reulen J, Messmer K. Die Kälteschwellung des Gehirns und die Begrenzung der Überlebenszeit in Hypothermie.  Klin Wochenschr. 1965;  43 515-517
  • 3 Hochachka P W. Defense strategies against hypoxia and hypothermia.  Science. 1986;  231 234-241
  • 4 Wald G. The origins of life.  Proc Nat Acad Sci. 1964;  52 595-611
  • 5 Margulis L. Symbiosis in cell evolution: Microbial communities in the archean and proterozoic eons. 2nd ed. New York; Freeman 1993
  • 6 Cowen R. History of life. 3rd ed. Malden, Mass.; Blackwell 2000
  • 7 Gnaiger E, Steinlechner-Maran R, Méndez G, Eberl T, Margreiter R. Control of mitochondrial and cellular respiration by oxygen.  J Bioenerg Biomembr. 1995;  27 583-596
  • 8 Daum S. Hypoxie-Einleitung. In: Daum S (Ed). Hypoxie: Pathophysiologie, Klinik und Therapie. München-Deisenhofen; Dustri-Verlag Dr. Karl Feistle 1984: 1-16
  • 9 Rahn H. Gas transport from the external environment to cell. In: de Reuck AVS, Porter R (eds) Development of the lung (Ciba Foundation Symposium). London; Churchill 1967: 3-23
  • 10 Hughes G M. Evolution between air and water. In: de Reuck AVS, Porter R (eds) Development of the lung (Ciba Foundation Symposium). London; Churchill 1967: 64-80
  • 11 Singer D. Bedeutung und Kontrolle der Körpertemperatur bei Homöothermen. In: Weyland W, Braun U, Kettler D (Hrsg) Perioperative Hypothermie: Probleme, Prävention und Therapie. Ebelsbach; Aktiv Druck & Verlag 1997: 1-12
  • 12 Bennett A F, Dawson W R. Metabolism. In: Gans C, Dawson WR (eds) Biology of the reptilia. Vol. 5. Physiology A. London; Academic Press 1976: 127-223
  • 13 Dawson T J. Primitive mammals and patterns in the evolution of thermoregulation. In: Bligh J, Moore RE (eds) Essays on temperature regulation. Amsterdam; North-Holland 1972: 1-18
  • 14 Crompton A W, Taylor C R, Jagger J A. Evolution of homeothermy in mammals.  Nature. 1978;  72 333-336
  • 15 Else P L, Hulbert A J. Comparison of the “mammal machine” and the “reptile machine”: Energy production.  Am J Physiol. 1981;  240 R3-R9
  • 16 Else P L, Hulbert A J. Evolution of mammalian endothermic metabolism: “Leaky” membranes as a source of heat.  Am J Physiol. 1987;  253 R1-R7
  • 17 Hulbert A J, Else P L. Membranes as possible pacemakers of metabolism.  J Theor Biol. 1999;  199 257-274
  • 18 Hulbert A J, Else P L. Mechanisms underlying the cost of living in animals.  Annu Rev Physiol. 2000;  62 207-235
  • 19 Belkin D A. Anoxia: Tolerance in reptiles.  Science. 1963;  139 492-493
  • 20 Doll C J, Hochachka P W, Reiner P B. Effects of anoxia and metabolic arrest on turtle and rat cortical neurons.  Am J Physiol. 1991;  260 R747-R755
  • 21 Jackson D C. Metabolic depression and oxygen depletion in the diving turtle.  J Appl Physiol. 1968;  24 503-509
  • 22 Jackson D C. Living without oxygen: Lessons from the freshwater turtle.  Comp Biochem Physiol A. 2000;  125 299-315
  • 23 Jackson D C, Heisler N. Plasma ion balance of submerged anoxic turtles at 3 °C: The role of calcium lactate formation.  Respir Physiol. 1982;  49 159-174
  • 24 Jackson D C. How a turtle's shell helps it survive prolonged anoxic acidosis.  News Physiol Sci. 2000;  15 181-185
  • 25 Bretschneider H J, Hübner G, Knoll D, Lohr B, Nordbeck H, Spieckermann P G. Myocardial resistance and tolerance to ischemia: Physiological and biochemical basis.  J Cardiovasc Surg. 1975;  16 241-260
  • 26 Bretschneider H J. Organübergreifende Prinzipien zur Verlängerung der Ischämietoleranz.  Leopoldina. 1992;  37 (R.3) 161-174
  • 27 Singer D, Bretschneider H J. Metabolic reduction in hypothermia: Pathophysiological problems and natural examples (part 1/2).  Thorac Cardiovasc Surgeon. 1990;  38 205 - 211-212 - 219
  • 28 Singer D, Bach F, Zeller U, Hehenkamp E, Waldow A, Schröter W, Kuhn H-J. From hibernators to neonates: A comparative-physiological approach to metabolic reduction. In: Siegenthaler W, Haas R (eds) Forschung und Klinik an der Schwelle zum 3. Jahrtausend. Stuttgart; Thieme 2000: 222-233
  • 29 Kleiber M. The fire of life: An introduction to animal energetics. New York; Wiley 1961
  • 30 Schmidt-Nielsen K. Scaling: Why is animal size so important?. Cambridge; Cambridge University Press 1984
  • 31 Rubner M. Über den Einfluss der Körpergröße auf Stoff- und Kraftwechsel.  Z Biol. 1883;  19 535-562
  • 32 Hensel H, Brück K, Raths P. Homeothermic organisms, X. Temperature and development. In: Precht H, Christophersen J, Hensel H, Larcher W (eds) Temperature and life. Berlin; Springer 1973: 670-687
  • 33 Brück K. Wärmehaushalt und Temperaturregelung. In: Schmidt RF, Thews G (Hrsg) Physiologie des Menschen. 23. Aufl. Berlin; Springer 1987: 660-682
  • 34 Hemmingsen A M. Energy metabolism as related to body size and respiratory surfaces and its evolution.  Rep Steno Mem Hosp (Copenhagen). 1960;  9 1-110
  • 35 Günther B. Stoffwechsel und Körpergröße: Dimensionsanalyse und Similaritätstheorien. In: Aschoff J, Günther B, Kramer K (Hrsg) Energiehaushalt und Temperaturregulation (Gauer/Kramer/Jung, Physiologie des Menschen, Band 2). München; Urban & Schwarzenberg 1971: 117-151
  • 36 Sernetz M, Gelléri B, Hofmann J. The organism as a bioreactor: Interpretation of the reduction law of metabolism in terms of heterogeneous catalysis and fractal structure.  J Theor Biol. 1985;  117 209-230
  • 37 Sernetz M, Willems H, Bittner H R. Fractal organization of metabolism. In: Wiesner W, Gnaiger E (eds) Energy transformations in cells and organisms. Stuttgart; Thieme 1989: 82-90
  • 38 Porter R K. Allometry of mammalian cellular oxygen consumption.  Cell Mol Life Sci. 2001;  58 815-822
  • 39 Darveau C-A, Suarez R K, Andrews R D, Hochachka P W. Allometric cascade as a unifying principle of body mass effects on metabolism.  Nature. 2002;  417 166-170
  • 40 Pearson O P. Metabolism of small mammals, with remarks on the lower limit of mammalian size.  Science. 1948;  108 44
  • 41 Rahn H. Time, Energy and Body Size. In: Paganelli CV, Farhi LE (eds) Physiological function in special environments. New York; Springer 1989: 203-213
  • 42 Prinzinger R. Life span in birds and the ageing theory of absolute metabolic scope.  Comp Biochem Physiol A. 1993;  105 609-615
  • 43 Krebs H A. Body size and tissue respiration.  Biochim Biophys Acta. 1950;  4 249-269
  • 44 Singer D, Schunck O, Bach F, Kuhn H-J. Size effects on metabolic rate in cell, tissue, and body calorimetry.  Thermochim Acta. 1995;  251 227-240
  • 45 Singer D, Schunck O, Bach F, Kuhn H-J. Body size allometry of mammalian blood heat output as assessed by microcalorimetry.  Thermochim Acta. 1993;  229 133-145
  • 46 Singer D, Bach F, Bretschneider H J, Kuhn H-J. Microcalorimetric monitoring of ischemic tissue metabolism: Influence of incubation conditions and experimental animal species.  Thermochim Acta. 1991;  187 55-69
  • 47 Satinoff E. A reevaluation of the concept of the homeostatic organization of temperature regulation. In: Satinoff E, Teitelbaum P (eds) Handbook of behavioral neurobiology. Vol. 6. Motivation.  New York ; Plenum 1983: 443-472
  • 48 Hochachka P W, Somero G N. Strategien biochemischer Anpassung. Stuttgart; Thieme 1980
  • 49 Wegener G. Hypoxia and posthypoxic recovery in insects: Physiological and metabolic aspects. In: Hochachka PW, Lutz PL, Sick T, Rosenthal M, van den Thillart G (eds) Surviving hypoxia: Mechanisms of control and adaptation. Boca Raton; CRC 1993: 417-434
  • 50 Singer D. Thermoregulation. In: Schulte am Esch J, Scholz J, Wappler F (eds) Malignant hyperthermia. Lengerich; Pabst Science Publishers 2000: 78-90
  • 51 Blatteis C M (ed). Physiology and pathophysiology of temperature regulation. Singapore; World Scientific 1998
  • 52 Lyman C P. Why bother to hibernate?. In: Lyman CP, Willis JS, Malan A, Wang LCH (eds) Hibernation and torpor in mammals and birds. New York; Academic Press 1982: 1-11
  • 53 Cowles R B. Possible origin of dermal temperature regulation.  Evolution. 1958;  12 347-357
  • 54 Satinoff E. Neural organization and evolution of thermal regulation in mammals.  Science. 1978;  201 16-22
  • 55 Heldmaier G. Zitterfreie Wärmebildung und Körpergröße bei Säugetieren.  Z Vergl Physiol. 1971;  73 222-248
  • 56 McIntyre J, Hull D, Nedergaard J, Cannon B. Thermoregulation. In: Gluckman PD, Heymann MA (eds) Perinatal and pediatric pathophysiology: A clinical perspective. London; Edward Arnold 1993: 357-368
  • 57 Kleinebeckel D, Klussmann F W. Shivering. In: Schönbaum E, Lomax P (eds) Thermoregulation: Physiology and biochemistry. New York; Pergamon 1990: 235-253
  • 58 Horwitz B A. Biochemical mechanisms and control of cold-induced cellular thermogenesis in placental mammals. In: Wang LCH (ed) Advances in comparative and environmental physiology. Vol. 4. Animal adaptation to cold. Berlin; Springer 1989: 83-116
  • 59 Singer D, Hellige G. Vorbereitung und Steuerung der extrakorporalen Zirkulation aus physiologischer Sicht. In: Preuße CJ, Schulte HD (Hrsg) Extrakorporale Zirkulation - heute. Darmstadt; Steinkopff 1991: 1-29
  • 60 Heath J E. The origins of thermoregulation. In: Drake ET (ed) Evolution and environment. New Haven; Yale University Press 1968: 259-278
  • 61 Taylor C R, Maloiy G MO, Weibel E R, Lagman V A, Kamau J MZ, Seeherman H, Heglund N C. Design of the mammalian respiratory system: Scaling maximum aerobic capacity to body mass - wild and domestic mammals.  Respir Physiol. 1981;  44 25-38
  • 62 Taylor C R. Scaling limits of metabolism to body size: Implications for animal design. In: Taylor CR, Johansen K, Bolis L (eds) A companion to animal physiology. Cambridge; Cambridge University Press 1982: 161-170
  • 63 Weibel E R. The pathway for oxygen: Structure and function in the mammalian respiratory system. Cambridge, Mass.; Harvard University Press 1984
  • 64 Nicolau M C, Akaârir M, Gamundí A, González J, Rial R V. Why we sleep: The evolutionary pathway to mammalian sleep.  Progr Neurobiol. 2000;  62 379-406
  • 65 Berger R J. Bioenergetic functions of sleep and activity rhythms and their possible relevance to aging.  Fed Proc. 1975;  34 97-102
  • 66 Berger R J. Slow wave sleep, shallow torpor and hibernation: Homologous states of diminished metabolism and body temperature.  Biol Psychol. 1984;  19 305-326
  • 67 Davenport J. Animal life at low temperature. London; Chapman & Hall 1992
  • 68 Irving L. Terrestrial animals in cold: Birds and mammals. In: Dill DB, Adolph EF, Wilber CG (eds) Adaptation to the environment (Handbook of physiology, section 4). Washington; Amer Physiol Soc 1964: 361-377
  • 69 Irving L. Heterothermous operation of warm-blooded animals.  Physiologist. 1959;  2 18-32
  • 70 Irving L, Schmidt-Nielsen K, Abrahamsen N SB. On the melting points of animal fats in cold climates.  Physiol Zool. 1957;  30 93-105
  • 71 Schmidt-Nielsen K. Animal physiology: Adaptation and environment, 3rd ed. Chapt. 8. Temperature regulation. Cambridge; Cambridge University Press 1983: 249-305
  • 72 Lyman C P, Willis J S, Malan A, Wang L CH. Hibernation and torpor in mammals and birds. New York; Academic Press 1982
  • 73 Singer D. Der Winterschlaf als „Naturexperiment” zur Temperatursenkung und Umsatzreduktion bei homöothermen Organismen. Göttingen; Med Diss 1989
  • 74 Heller HC, Musacchia XJ, Wang LCH (eds) Living in the cold: Physiological and biochemical adaptations. New York; Elsevier 1986
  • 75 Malan A, Canguilhem B (eds). Living in the cold II. London, Paris; Libbey 1989
  • 76 Heldmaier G, Klingenspor M (eds). Life in the cold. Berlin; Springer 2000
  • 77 Kalter V G, Folk G E. Humoral induction of mammalian hibernation.  Comp Biochem Physiol A. 1979;  63 7-13
  • 78 Reeves R B. An imidazole alphastat hypothesis for vertebrate acid-base regulation: Tissue carbon dioxide content and body temperature in bullfrogs.  Respir Physiol. 1972;  14 219-236
  • 79 Park Y S, Hong S K. Properties of toad skin Na-K-ATPase with special reference to effect of temperature.  Am J Physiol. 1976;  231 1356-1363
  • 80 Rahn H, Prakash O (eds). Acid-base regulation and body temperature. Boston; Nijhoff 1985
  • 81 Truchot J-P. Comparative aspects of extracellular acid-base balance (Zoophysiology, vol. 20). Berlin; Springer 1987
  • 82 Malan A. Enzyme regulation, metabolic rate and acid-base state in hibernation. In: Gilles R (ed) Animals and environmental fitness: Physiological and biochemical aspects of adaptation and ecology. Vol. 1. Oxford; Pergamon 1980: 487-501
  • 83 Malan A. pH as a control factor in hibernation. In: Heller HC, Musacchia XJ, Wang LCH (eds) Living in the cold: Physiological and biochemical adaptations. New York; Elsevier 1986: 61-70
  • 84 Malan A. pH as a control factor of cell function in hibernation: The case of brown adipose tissue thermogenesis. In: Malan A, Canguilhem (eds) Living in the cold II. London, Paris; Libbey 1989: 333-340
  • 85 Malan A. Acid-base regulation in hibernation and aestivation. In: Egginton S, Taylor EW, Raven JA (eds) Regulation of acid-base status in animals and plants (Soc Exp Biol Seminar Series 68). Cambridge; Cambridge University Press 1999: 324-339
  • 86 Tyler-Jones R, Tayler E W. Back to basics: A plea for a fundamental reappraisal of the representation of acidity and basicity in biological solutions. In: Egginton S, Taylor EW, Raven JA (eds) Regulation of acid-base status in animals and plants (Soc Exp Biol Seminar Series 68). Cambridge; Cambridge University Press 1999: 353-371
  • 87 Hering J P, Schröder T, Singer D, Hellige G. Influence of pH management on hemodynamics and metabolism in moderate hypothermia.  J Thorac Cardiovasc Surg. 1992;  104 1388-1395
  • 88 Tallman R D. Acid-base regulation, alpha-stat, and the emperor's new clothes.  J Cardiothorac Vasc Anesth. 1997;  11 282-288
  • 89 Aloia R C. The role of membrane fatty acids in mammalian hibernation.  Fed Proc. 1980;  39 2974-2979
  • 90 Van Breukelen F, Martin S L. Molecular adaptations in mammalian hibernators: Unique adaptations or generalized responses?.  J Appl Physiol. 2002;  92 2640-2647
  • 91 Kayser C. The physiology of natural hibernation. New York; Pergamon 1961
  • 92 Geiser F. Reduction of metabolism during hibernation and daily torpor in mammals and birds. Temperature effect or physiological inhibition?.  J comp Physiol B. 1988;  158 25-37
  • 93 Heldmaier G, Ruf T. Body temperature and metabolic rate during natural hypothermia in endotherms.  J comp Physiol B. 1992;  162 696-706
  • 94 Singer D, Bach F, Bretschneider H J, Kuhn H-J. Metabolic size allometry and the limits to beneficial metabolic reduction: Hypothesis of a uniform specific minimal metabolic rate. In: Hochachka PW, Lutz PL, Sick T, Rosenthal M, van den Thillart G (eds) Surviving hypoxia: Mechanisms of control and adaptation. Boca Raton; CRC 1992: 447-458
  • 95 Watts P D, Øritsland N A, Jonkel C, Ronald K. Mammalian hibernation and the oxygen consumption of a denning black bear (Ursus americanus).  Comp Biochem Physiol A. 1981;  69 121-123
  • 96 Hochachka P W, Guppy M. Metabolic arrest and the control of biological time. Cambridge, Mass.; Harvard University Press 1987
  • 97 Wieser W. A distinction must be made between the ontogeny and the phylogeny of metabolism in order to understand the mass exponent of energy metabolism.  Respir Physiol. 1984;  55 1-9
  • 98 Wieser W. Bioenergetik: Energietransformationen bei Organismen. Stuttgart; Thieme 1986
  • 99 Bohr C. Der respiratorische Stoffwechsel des Säugethierembryo.  Skand Arch Physiol. 1900;  10 413-424
  • 100 Hasselbalch K A. Über den respiratorischen Stoffwechsel des Hühnerembryos.  Skand Arch Physiol. 1900;  10 353-402
  • 101 Hill J R, Rahimtulla K A. Heat balance and the metabolic rate of new-born babies in relation to environmental temperature; and the effect of age and of weight on basal metabolic rate.  J Physiol. 1965;  180 239-265
  • 102 Wilkie D R. Metabolism and body size. In: Pedley TJ (ed) Scale effects in animal locomotion. London; Academic Press 1977: 23-36
  • 103 Rahn H. Comparison of embryonic development in birds and mammals: birth weight, time, and cost. In: Taylor CR, Johansen K, Bolis L (eds) A companion to animal physiology. Cabridge; Cambridge University Press 1982: 124-137
  • 104 Paganelli C V, Rahn H. Adult and embryonic metabolism in birds and the role of shell conductance. In: Seymour RS (ed) Respiration and metabolism of embryonic vertebrates. Dordrecht; Dr W Junk 1984: 193-204
  • 105 Schröder H J, Power G G. Basic aspects of fetal thermal homeostasis. In: Zeisberger E, Schönbaum E, Lomax P (eds) Thermal balance in health and disease: Recent basic research and clinical progress. Basel; Birkhäuser 1994: 235-249
  • 106 Singer D. Anpassung an Unreife und Sauerstoffmangel in der Neonatalperiode: Vergleichende kalorimetrische Untersuchungen (Habil.-Schr. Univ. Göttingen 1998). Aachen; Shaker 2001
  • 107 Singer D, Schiffmann H. Thermoregulatorische Besonderheiten des pädiatrischen Patienten. In: Weyland W, Braun U, Ketter D (Hrsg) Perioperative Hypothermie: Probleme, Prävention und Therapie. Ebelsbach; Aktiv Druck & Verlag 1997: 110-122
  • 108 Singer D. Thermometry and calorimetry in the neonatale: Recent advances in monitoring and research.  Thermochim Acta. 1998;  309 39-47
  • 109 Fazekas J F, Alexander F AD, Himwich H E. Tolerance of the newborn to anoxia.  Am J Physiol. 1941;  134 281-287
  • 110 Singer D. Neonatal tolerance to hypoxia.  Comp Biochem Physiol A. 1999;  123 221-234
  • 111 Mortola J P. How newborn mammals cope with hypoxia.  Respir Physiol. 1999;  116 95-103
  • 112 Elsner R, Franklin D L, van Citters R L, Kenney D W. Cardiovascular defense against asphyxia: Studies of circulatory responses to diving in aquatic and land animals clarify some reactions to asphyxia.  Science. 1966;  153 941-949
  • 113 Elsner R, Gooden B. Diving and asphyxia: A comparative study of animals and man.  Monogr Physiol Soc. 1983;  40 1-168
  • 114 Hochachka P W. Living without oxygen: Closed and open systems in hypoxia tolerance. Chapt. 9. Diving marine mammals. Cambridge, Mass; Harvard University Press 1980: 145-169
  • 115 Lutz P L, Hochachka P W. Hypoxia defense mechanisms: A comparison between diving reptiles and mammals. In: Hochachka PW, Lutz PL, Sick T, Rosenthal M, van den Thillard G (eds) Surviving hypoxia: Mechanisms of control and adaptation. Boca Raton; CRC 1993: 459-469
  • 116 Sidi D, Kuipers J RG, Teitel D, Heymann M A, Rudolph A M. Developmental changes in oxygenation and circulatory responses to hypoxemia in lambs.  Am J Physiol. 1983;  245 H674-H682
  • 117 Fahey J T, Lister G. Response to low cardiac output: Developmental differences in metabolism during oxygen deficit and recovery in lambs.  Pediatr Res. 1989;  26 180-187
  • 118 Hill J. The oxygen consumption of new-born and adult mammals: Its dependence on the oxygen tension in the inspired air and on the environmental temperature.  J Physiol. 1959;  149 346-373
  • 119 Wood S C, Gonzales R. Hypothermia in hypoxic animals: Mechanisms, mediators, and functional significance.  Comp Biochem Physiol. 1996;  113B 37-43
  • 120 Rohlicek C V, Saiki C, Matsuoka T, Mortola J P. Oxygen transport in conscious newborn dogs during hypoxic hypometabolism.  J Appl Physiol. 1998;  84 763-768
  • 121 Gautier H. Invited editorial on “oxygen transport in conscious newborn dogs during hypoxic hypometabolism”.  J Appl Physiol. 1998;  84 761-762
  • 122 Tschischka K, Abele D, Pörtner H O. Mitochondrial oxyconformity and cold adaptation in the polychaete Nereis pelagica and the bivalve Arctica islandica from the baltic and white seas.  J Exp Biol. 2000;  200 3355-3368
  • 123 Boutilier R G, Donohoe P H, Tattersall G J, West T G. Hypometabolic homeostasis in overwintering aquatic amphibians.  J Exp Biol. 1997;  200 387-400
  • 124 Singer D, Ince A, Hallmann B. Oxygen supply, body size, and metabolic rate at the beginning of mammalian life. Thermochim Acta 2002: in press
  • 125 Ar A, Mover H. Oxygen tensions in developing embryos: System inefficiency or system requirement?.  Israel J Zool. 1994;  40 307-326

PD Dr. med. D. Singer

Universitäts-Kinderklinik

Josef-Schneider-Straße 2

97080 Würzburg

Email: d.singer@mail.uni-wuerzburg.de

    >